These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 6618665)

  • 1. Molecular epidemiological studies of United States Gulf Coast Vibrio cholerae strains: integration site of mutator vibriophage VcA-3.
    Goldberg S; Murphy JR
    Infect Immun; 1983 Oct; 42(1):224-30. PubMed ID: 6618665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibriophage VcA-3 as an epidemic strain marker for the U.S. Gulf Coast Vibrio cholerae O1 clone.
    Almeida RJ; Cameron DN; Cook WL; Wachsmuth IK
    J Clin Microbiol; 1992 Feb; 30(2):300-4. PubMed ID: 1537896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular epidemiology of non-O1 Vibrio cholerae and Vibrio mimicus in the U.S. Gulf Coast region.
    Kaper JB; Nataro JP; Roberts NC; Siebeling RJ; Bradford HB
    J Clin Microbiol; 1986 Mar; 23(3):652-4. PubMed ID: 3007571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular epidemiology of Vibrio cholerae in the U.S. Gulf Coast.
    Kaper JB; Bradford HB; Roberts NC; Falkow S
    J Clin Microbiol; 1982 Jul; 16(1):129-34. PubMed ID: 7107852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genesis of variants of Vibrio cholerae O1 biotype El Tor: role of the CTXphi array and its position in the genome.
    Nandi S; Maiti D; Saha A; Bhadra RK
    Microbiology (Reading); 2003 Jan; 149(Pt 1):89-97. PubMed ID: 12576583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Alteration of cholera toxin biosynthesis in Vibrio cholerae 01 as a result of temperate phage 139 integration into bacterial chromosome].
    Eroshenko GA; Smirnova NI
    Mol Gen Mikrobiol Virusol; 2002; (2):9-14. PubMed ID: 12180025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic mapping of Vibrio cholerae enterotoxin structural genes.
    Sporecke I; Castro D; Mekalanos JJ
    J Bacteriol; 1984 Jan; 157(1):253-61. PubMed ID: 6690422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae O1.
    Cook WL; Wachsmuth K; Johnson SR; Birkness KA; Samadi AR
    Infect Immun; 1984 Jul; 45(1):222-6. PubMed ID: 6329956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative mechanism of cholera toxin acquisition by Vibrio cholerae: generalized transduction of CTXPhi by bacteriophage CP-T1.
    Boyd EF; Waldor MK
    Infect Immun; 1999 Nov; 67(11):5898-905. PubMed ID: 10531246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the major control region of Vibrio cholerae bacteriophage K139: immunity, exclusion, and integration.
    Nesper J; Blass J; Fountoulakis M; Reidl J
    J Bacteriol; 1999 May; 181(9):2902-13. PubMed ID: 10217785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presence of lysogenic phage in the outbreak strains of Vibrio cholerae O139.
    Mitra SN; Kar S; Ghosh RK; Pajni S; Ghosh A
    J Med Microbiol; 1995 Jun; 42(6):399-403. PubMed ID: 7791203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of nontoxigenic Vibrio cholerae O group 1 from a patient with severe gastrointestinal disease.
    Morris JG; Picardi JL; Lieb S; Lee JV; Roberts A; Hood M; Gunn RA; Blake PA
    J Clin Microbiol; 1984 Feb; 19(2):296-7. PubMed ID: 6199370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysogenicity and prophage type of the strains of Vibrio cholerae O-1 isolated mainly from the natural environment.
    Shimodori S; Takeya K; Takade A
    Am J Epidemiol; 1984 Nov; 120(5):759-68. PubMed ID: 6496453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTX phage of Vibrio cholerae: Genomics and applications.
    Pant A; Das B; Bhadra RK
    Vaccine; 2020 Feb; 38 Suppl 1():A7-A12. PubMed ID: 31272871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Genetic control of toxin formation by Vibrio cholerae. I. Mobilization of the tox gene of Vibrio cholerae by plasmid RP::Mu ctsS62].
    Skavronskaia AG; Gaĭlonskaia IN; Vertiev IuV; Aleshkin GI; Tiganova IT
    Zh Mikrobiol Epidemiol Immunobiol; 1981 Jul; (7):22-7. PubMed ID: 7282188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CTX prophages in classical biotype Vibrio cholerae: functional phage genes but dysfunctional phage genomes.
    Davis BM; Moyer KE; Boyd EF; Waldor MK
    J Bacteriol; 2000 Dec; 182(24):6992-8. PubMed ID: 11092860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysogenic conversion by a filamentous phage encoding cholera toxin.
    Waldor MK; Mekalanos JJ
    Science; 1996 Jun; 272(5270):1910-4. PubMed ID: 8658163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative mobile elements exploiting Xer recombination.
    Das B; Martínez E; Midonet C; Barre FX
    Trends Microbiol; 2013 Jan; 21(1):23-30. PubMed ID: 23127381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular analysis of the rstR and orfU genes of the CTX prophages integrated in the small chromosomes of environmental Vibrio cholerae non-O1, non-O139 strains.
    Bhattacharya T; Chatterjee S; Maiti D; Bhadra RK; Takeda Y; Nair GB; Nandy RK
    Environ Microbiol; 2006 Mar; 8(3):526-634. PubMed ID: 16478458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic mapping of mutations in independently isolated nontoxinogenic mutants of Vibrio cholerae.
    Baine WB; Vasil ML; Holmes RK
    Infect Immun; 1978 Jul; 21(1):194-200. PubMed ID: 711315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.