BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 6619122)

  • 1. Studies on the high molecular weight form of polypeptide chain elongation factor-1 from pig liver. III. Temperature-dependent dissociation into subunits in the presence of GTP.
    Hattori S; Iwasaki K
    J Biochem; 1983 Jul; 94(1):79-85. PubMed ID: 6619122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the high molecular weight form of polypeptide chain elongation factor-1 from pig liver. II. Interaction with guanine nucleotides and aminoacyl-tRNA.
    Hattori S; Iwasaki K
    J Biochem; 1982 Jul; 92(1):173-83. PubMed ID: 6922131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide elongation factor 1 from yeasts: purification and biochemical characterization of peptide elongation factors 1 alpha and 1 beta (gamma) from Saccharomyces carlsbergensis and Schizosaccharomyces pombe.
    Miyazaki M; Uritani M; Fujimura K; Yamakatsu H; Kageyama T; Takahashi K
    J Biochem; 1988 Mar; 103(3):508-21. PubMed ID: 3214489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes.
    Carvalho MD; Carvalho JF; Merrick WC
    Arch Biochem Biophys; 1984 Nov; 234(2):603-11. PubMed ID: 6568109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the high molecular weight form of polypeptide chain elongation factor-1 from pig liver. I. Purification and subunit structure.
    Hattori S; Iwasaki K
    J Biochem; 1980 Sep; 88(3):725-36. PubMed ID: 7419519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of yeast elongation factor 3 in the elongation cycle.
    Kamath A; Chakraburtty K
    J Biol Chem; 1989 Sep; 264(26):15423-8. PubMed ID: 2670939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of elongation factor 2 and of adenosine diphosphate-ribosylated elongation factor 2 on translocation.
    Montanaro L; Sperti S; Testoni G; Mattioli A
    Biochem J; 1976 Apr; 156(1):15-23. PubMed ID: 182140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of elongation factor 1 (EF-1) by protein kinase C stimulates GDP/GTP-exchange activity.
    Peters HI; Chang YW; Traugh JA
    Eur J Biochem; 1995 Dec; 234(2):550-6. PubMed ID: 8536702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
    Wolf H; Chinali G; Parmeggiani A
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EF-1 alpha is a target site for an inhibitory effect of quercetin in the peptide elongation process.
    Marcinkiewicz C; Gałasiński W; Gindzieński A
    Acta Biochim Pol; 1995; 42(3):347-50. PubMed ID: 8588487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of three elongation factors, EF-1 alpha, EF-1 beta gamma, and EF-2, from wheat germ.
    Lauer SJ; Burks E; Irvin JD; Ravel JM
    J Biol Chem; 1984 Feb; 259(3):1644-8. PubMed ID: 6559195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of aminoacyl-tRNA to ribosomes promoted by elongation factor Tu. Studies on the role of GTP hydrolysis.
    Yokosawa H; Kawakita M; Arai K; Inoue-Yokosawa N; Kaziro Y
    J Biochem; 1975 Apr; 77(4):719-28. PubMed ID: 1097432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome.
    Cetin R; Krab IM; Anborgh PH; Cool RH; Watanabe T; Sugiyama T; Izaki K; Parmeggiani A
    EMBO J; 1996 May; 15(10):2604-11. PubMed ID: 8665868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic studies on the role of elongation factors 1 beta and 1 gamma in protein synthesis.
    Janssen GM; Möller W
    J Biol Chem; 1988 Feb; 263(4):1773-8. PubMed ID: 3338993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of ribosome-associated adenosinetriphosphatase (ATPase) from pig liver and the ATPase of elongation factor 3 from Saccharomyces cerevisiae.
    Kovalchuke O; Chakraburtty K
    Eur J Biochem; 1994 Nov; 226(1):133-40. PubMed ID: 7957240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The accuracy of protein biosynthesis is limited by its speed: high fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP[gamma S].
    Thompson RC; Karim AM
    Proc Natl Acad Sci U S A; 1982 Aug; 79(16):4922-6. PubMed ID: 6750613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translocation reaction promoted by polypeptide chain elongation factor-2 from pig liver.
    Tanaka M; Iwasaki K; Kaziro Y
    J Biochem; 1977 Oct; 82(4):1035-43. PubMed ID: 924979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of a high-molecular-mass complex between Val-tRNA synthetase and the heavy form of elongation factor 1 from mammalian cells.
    Motorin YA; Wolfson AD; Löhr D; Orlovsky AF; Gladilin KL
    Eur J Biochem; 1991 Oct; 201(2):325-31. PubMed ID: 1935929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of subunits of polypeptide chain elongation factor I from pig liver. Formation of EF-1alpha.EF-1betagamma and EF-1beta complexes.
    Nagata S; Motoyoshi K; Iwasaki K
    J Biochem; 1978 Feb; 83(2):423-9. PubMed ID: 632230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.