These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6619156)

  • 1. In vitro contact stress distributions in the natural human hip.
    Brown TD; Shaw DT
    J Biomech; 1983; 16(6):373-84. PubMed ID: 6619156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro contact stress distribution on the femoral condyles.
    Brown TD; Shaw DT
    J Orthop Res; 1984; 2(2):190-9. PubMed ID: 6548513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of incongruity, contact areas and cartilage thickness in the human hip joint.
    Eckstein F; von Eisenhart-Rothe R; Landgraf J; Adam C; Loehe F; Müller-Gerbl M; Putz R
    Acta Anat (Basel); 1997; 158(3):192-204. PubMed ID: 9394956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of hip anatomical variations on the cartilage stress: a finite element analysis towards the biomechanical exploration of the factors that may explain primary hip arthritis in morphologically normal subjects.
    Sánchez Egea AJ; Valera M; Parraga Quiroga JM; Proubasta I; Noailly J; Lacroix D
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):444-50. PubMed ID: 24530154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of the ovine hip: development, results and comparison with the human hip.
    Mazoochian F; Hölzer A; Jalali J; Schmidutz F; Schröder C; Woiczinski M; Maierl J; Augat P; Jansson V
    Vet Comp Orthop Traumatol; 2012; 25(4):301-6. PubMed ID: 22534728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct comparison of contact areas, contact stress and subchondral mineralization in human hip joint specimens.
    von Eisenhart-Rothe R; Eckstein F; Müller-Gerbl M; Landgraf J; Rock C; Putz R
    Anat Embryol (Berl); 1997 Mar; 195(3):279-88. PubMed ID: 9084826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A contact-coupled finite element analysis of the natural adult hip.
    Brown TD; DiGioia AM
    J Biomech; 1984; 17(6):437-48. PubMed ID: 6480619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new sensor for measurement of dynamic contact stress in the hip.
    Rudert MJ; Ellis BJ; Henak CR; Stroud NJ; Pederson DR; Weiss JA; Brown TD
    J Biomech Eng; 2014 Mar; 136(3):035001. PubMed ID: 24763632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hip joint geometry effects on cartilage contact stresses during a gait cycle.
    Hui-Hui Wu ; Dong Wang ; An-Bang Ma ; Dong-Yun Gu
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6038-6041. PubMed ID: 28269629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct measurement of local pressures in the cadaveric human hip joint during simulated level walking.
    Adams D; Swanson SA
    Ann Rheum Dis; 1985 Oct; 44(10):658-66. PubMed ID: 4051586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cartilage stresses in the human hip joint.
    Macirowski T; Tepic S; Mann RW
    J Biomech Eng; 1994 Feb; 116(1):10-8. PubMed ID: 8189704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical strains passing through the acetabular labrum modify its shape during hip motion: an anatomical study.
    Ollivier M; Le Corroller T; Parratte S; Chabrand P; Argenson JN; Gagey O
    Knee Surg Sports Traumatol Arthrosc; 2017 Jun; 25(6):1967-1974. PubMed ID: 28314887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Higher peak contact hip stress predetermines the side of hip involved in idiopathic osteoarthritis.
    Recnik G; Kralj-Iglic V; Iglic A; Antolic V; Kramberger S; Vengust R
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1119-24. PubMed ID: 17868960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of acetabular labrum tears on hip stability and labral strain in a joint compression model.
    Smith MV; Panchal HB; Ruberte Thiele RA; Sekiya JK
    Am J Sports Med; 2011 Jul; 39 Suppl():103S-10S. PubMed ID: 21709039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A contribution to the functional morphology of articular surfaces.
    Tillmann B
    Norm Pathol Anat (Stuttg); 1978; 34():1-50. PubMed ID: 693316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of acetabular rim trimming on hip joint contact pressures: how much is too much?
    Bhatia S; Lee S; Shewman E; Mather RC; Salata MJ; Bush-Joseph CA; Nho SJ
    Am J Sports Med; 2015 Sep; 43(9):2138-45. PubMed ID: 26180260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in chondrolabral mechanics, coverage, and congruency following peri-acetabular osteotomy for treatment of acetabular retroversion: A patient-specific finite element study.
    Knight SJ; Abraham CL; Peters CL; Weiss JA; Anderson AE
    J Orthop Res; 2017 Nov; 35(11):2567-2576. PubMed ID: 28370312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient-specific chondrolabral contact mechanics in patients with acetabular dysplasia following treatment with peri-acetabular osteotomy.
    Abraham CL; Knight SJ; Peters CL; Weiss JA; Anderson AE
    Osteoarthritis Cartilage; 2017 May; 25(5):676-684. PubMed ID: 27923602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of contact stress on cartilage friction, deformation and wear.
    Lizhang J; Fisher J; Jin Z; Burton A; Williams S
    Proc Inst Mech Eng H; 2011 May; 225(5):461-75. PubMed ID: 21755776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The shape of acetabular cartilage optimizes hip contact stress distribution.
    Daniel M; Iglic A; Kralj-Iglic V
    J Anat; 2005 Jul; 207(1):85-91. PubMed ID: 16011547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.