These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 6619168)

  • 21. The shear rate at the wall in a symmetrically branched tube simulating the aortic bifurcation.
    Walburn FJ; Stein PD
    Biorheology; 1982; 19(1/2):307-16. PubMed ID: 6212090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of stenosis inlet geometry on shear rates of blood flow in the upstream region.
    Denardo SJ; Yamada EG; Hargrave VK; Yock PG
    Am Heart J; 1993 Feb; 125(2 Pt 1):350-6. PubMed ID: 8427127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses.
    Li MX; Beech-Brandt JJ; John LR; Hoskins PR; Easson WJ
    J Biomech; 2007; 40(16):3715-24. PubMed ID: 17723230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of varying degrees of stenosis on the characteristics of turbulent pulsatile flow through heart valves.
    Bluestein D; Einav S
    J Biomech; 1995 Aug; 28(8):915-24. PubMed ID: 7673259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of curvature and stenosis-like narrowing on wall shear stress in a coronary artery model with phasic flow.
    Nosovitsky VA; Ilegbusi OJ; Jiang J; Stone PH; Feldman CL
    Comput Biomed Res; 1997 Feb; 30(1):61-82. PubMed ID: 9134307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical simulation of steady turbulent flow through trileaflet aortic heart valves--II. Results on five models.
    Stevenson DM; Yoganathan AP; Williams FP
    J Biomech; 1985; 18(12):909-26. PubMed ID: 4077859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Steady flow through a double converging-diverging tube model for mild coronary stenoses.
    van Dreumel SC; Kuiken GD
    J Biomech Eng; 1989 Aug; 111(3):212-21. PubMed ID: 2779186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence of a possible link between poststenotic dilation and wall shear stress.
    Ojha M; Johnston KW; Cobbold RS
    J Vasc Surg; 1990 Jan; 11(1):127-33; discussion 133-5. PubMed ID: 2296094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The analysis of blood velocity measurements by autoregressive modelling.
    Kitney RI; Talhami H; Giddens DP
    J Theor Biol; 1986 Jun; 120(4):419-42. PubMed ID: 3795986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An investigation of the flow field within patient-specific models of an abdominal aortic aneurysm under steady inflow conditions.
    O'Rourke MJ; McCullough JP
    Proc Inst Mech Eng H; 2010; 224(8):971-88. PubMed ID: 20923115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-resolved DPIV investigation of pulsatile flow in symmetric stenotic arteries--effects of phase angle.
    Karri S; Vlachos PP
    J Biomech Eng; 2010 Mar; 132(3):031010. PubMed ID: 20459198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monodimensional estimation of maximum Reynolds shear stress in the downstream flow field of bileaflet valves.
    Grigioni M; Daniele C; D'Avenio G; Barbaro V
    J Heart Valve Dis; 2002 May; 11(3):392-401. PubMed ID: 12056734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in vitro investigation of the influence of stenosis severity on the flow in the ascending aorta.
    Gülan U; Lüthi B; Holzner M; Liberzon A; Tsinober A; Kinzelbach W
    Med Eng Phys; 2014 Sep; 36(9):1147-55. PubMed ID: 25066583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Velocity and wall shear stress patterns in the human right coronary artery.
    Kirpalani A; Park H; Butany J; Johnston KW; Ojha M
    J Biomech Eng; 1999 Aug; 121(4):370-5. PubMed ID: 10464690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laser anemometry measurements of steady flow past aortic valve prostheses.
    Chew YT; Low HT; Lee CN; Kwa SS
    J Biomech Eng; 1993 Aug; 115(3):290-8. PubMed ID: 8231145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of turbulent shear stresses in pulsatile flow immediately downstream of two artificial aortic valves in vitro.
    Nygaard H; Giersiepen M; Hasenkam JM; Westphal D; Paulsen PK; Reul H
    J Biomech; 1990; 23(12):1231-8. PubMed ID: 2292602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A nonlinear axisymmetric model with fluid-wall interactions for steady viscous flow in stenotic elastic tubes.
    Tang D; Yang J; Yang C; Ku DN
    J Biomech Eng; 1999 Oct; 121(5):494-501. PubMed ID: 10529916
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Velocity profiles and streamlines of a revolution post-stenotic flow.
    Chahed N; Péronneau P; Delouche A; Diebold B
    Biorheology; 1991; 28(5):383-400. PubMed ID: 1838287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow.
    Schirmer CM; Malek AM
    Neurosurgery; 2007 Oct; 61(4):853-63; discussion 863-4. PubMed ID: 17986948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.