These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 6619181)

  • 1. Macroporous hydrogel membranes for a hybrid artificial pancreas. I. Synthesis and chamber fabrication.
    Ronel SH; D'Andrea MJ; Hashiguchi H; Klomp GF; Dobelle WH
    J Biomed Mater Res; 1983 Sep; 17(5):855-64. PubMed ID: 6619181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroporous hydrogel membranes for a hybrid artificial pancreas. II. Biocompatibility.
    Klomp GF; Hashiguchi H; Ursell PC; Takeda Y; Taguchi T; Dobelle WH
    J Biomed Mater Res; 1983 Sep; 17(5):865-71. PubMed ID: 6413510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amniotic membrane diffusion chambers: a new possibility for pancreatic islet transplantation.
    Maldonato A; Lucisano A; Maniccia E; Luciani G; Agnes R; Magalini S; Cama A; Marani F; Barbetti F; Fattibene M
    Life Support Syst; 1985; 3 Suppl 1():640-4. PubMed ID: 3939680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of pore size of a semipermeable membrane for immunoisolation on xenoimplantation of pancreatic B cells using a diffusion chamber.
    Ohgawara H; Miyazaki J; Karibe S; Katagiri N; Tashiro F; Akaike T
    Transplant Proc; 1995 Dec; 27(6):3319-20. PubMed ID: 8539970
    [No Abstract]   [Full Text] [Related]  

  • 5. [Polymeric materials for biomedical purposes obtained by radiation methods. V. hybrid artificial pancreas].
    Burczak K; Rosiak J
    Polim Med; 1994; 24(1-2):45-55. PubMed ID: 7971534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of protein release through glucose-sensitive hydrogel membranes.
    Obaidat AA; Park K
    Biomaterials; 1997 Jun; 18(11):801-6. PubMed ID: 9177859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for biomedical applications: properties and drug release characteristics.
    Arica MY; Bayramoglu G; Arica B; Yalçin E; Ito K; Yagci Y
    Macromol Biosci; 2005 Oct; 5(10):983-92. PubMed ID: 16208632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose recovery with bare and hydrogel-coated microdialysis probes: experiment and simulation of temporal effects.
    Norton LW; Yuan F; Reichert WM
    Anal Chem; 2007 Jan; 79(2):445-52. PubMed ID: 17222006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin release from a bioartificial pancreas using a mesh reinforced polyvinyl alcohol hydrogel tube. An in vitro study.
    Aung T; Kogire M; Inoue K; Fujisato T; Gu Y; Burczak K; Shinohara S; Mitsuo M; Maetani S; Ikada Y
    ASAIO J; 1993; 39(2):93-6. PubMed ID: 8324268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane immunoisolation of a diffusion chamber for bioartificial pancreas.
    Ohgawara H; Hirotani S; Miyazaki J; Teraoka S
    Artif Organs; 1998 Sep; 22(9):788-94. PubMed ID: 9754467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of AN69 hydrogel to islet encapsulation. Evaluation in streptozotocin-induced diabetic rat model.
    Prevost P; Flori S; Collier C; Muscat E; Rolland E
    Ann N Y Acad Sci; 1997 Dec; 831():344-9. PubMed ID: 9616726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release characteristics of novel pH-sensitive p(HEMA-DMAEMA) hydrogels containing 3-(trimethoxy-silyl) propyl methacrylate.
    Brahim S; Narinesingh D; Guiseppi-Elie A
    Biomacromolecules; 2003; 4(5):1224-31. PubMed ID: 12959587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biocompatibility testing and function of a pancreatic prosthesis consisting of viable pancreatic islets encapsulated in PVA macrocapsules].
    Gamian E; Kochman A; Rabczyński J; Burczak K
    Polim Med; 1999; 29(1-2):3-20. PubMed ID: 10876644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascularization of PEG-grafted macroporous hydrogel sponges: a three-dimensional in vitro angiogenesis model using human microvascular endothelial cells.
    Dziubla TD; Lowman AM
    J Biomed Mater Res A; 2004 Mar; 68(4):603-14. PubMed ID: 14986316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein transfer through polyacrylamide hydrogel membranes polymerized in lyotropic phases.
    Monteiro MJ; Hall G; Gee S; Xie L
    Biomacromolecules; 2004; 5(5):1637-41. PubMed ID: 15360267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.
    Savina IN; Dainiak M; Jungvid H; Mikhalovsky SV; Galaev IY
    J Biomater Sci Polym Ed; 2009; 20(12):1781-95. PubMed ID: 19723441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane.
    Teramura Y; Kaneda Y; Iwata H
    Biomaterials; 2007 Nov; 28(32):4818-25. PubMed ID: 17698188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Experimental implantation of hydrogel into bone].
    Korbelár P; Vacík J; Dylevský I; Sulc J; Hulvert J
    Acta Chir Orthop Traumatol Cech; 1989 Feb; 56(1):45-65. PubMed ID: 2718692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of subcutaneously implanted chambers in calves for in vivo study of isolates of Moraxella bovis.
    Pugh GW; Wilbur LA; Beall CW
    Am J Vet Res; 1986 Oct; 47(10):2222-5. PubMed ID: 3777650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of manufacturing technology and material composition on the mechanical properties of hydrogel contact lenses.
    Maldonado-Codina C; Efron N
    Ophthalmic Physiol Opt; 2004 Nov; 24(6):551-61. PubMed ID: 15491483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.