These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 6619662)
1. Age structure in predator-prey systems: intraspecific carnivore interaction, passive diffusion, and the paradox of enrichment. Smith JL; Wollkind DJ J Math Biol; 1983; 17(3):275-88. PubMed ID: 6619662 [TBL] [Abstract][Full Text] [Related]
2. A predator prey model with age structure. Cushing JM; Saleem M J Math Biol; 1982; 14(2):231-50. PubMed ID: 7119585 [TBL] [Abstract][Full Text] [Related]
3. The influence of vigilance on intraguild predation. Kimbrell T; Holt RD; Lundberg P J Theor Biol; 2007 Nov; 249(2):218-34. PubMed ID: 17888456 [TBL] [Abstract][Full Text] [Related]
4. The effect of long time delays in predator-prey systems. Nunney L Theor Popul Biol; 1985 Apr; 27(2):202-21. PubMed ID: 4023953 [TBL] [Abstract][Full Text] [Related]
5. Predator-prey systems with group defence: the paradox of enrichment revisited. Freedman HI; Wolkowicz GS Bull Math Biol; 1986; 48(5-6):493-508. PubMed ID: 3580637 [No Abstract] [Full Text] [Related]
6. Pattern formation induced by intraspecific interactions in a predator-prey system. Stucchi L; Galeano J; Vasquez DA Phys Rev E; 2019 Dec; 100(6-1):062414. PubMed ID: 31962478 [TBL] [Abstract][Full Text] [Related]
7. Dispersal delays, predator-prey stability, and the paradox of enrichment. Klepac P; Neubert MG; van den Driessche P Theor Popul Biol; 2007 Jun; 71(4):436-44. PubMed ID: 17433392 [TBL] [Abstract][Full Text] [Related]
8. A resolution of the paradox of enrichment. Mougi A; Nishimura K J Theor Biol; 2007 Sep; 248(1):194-201. PubMed ID: 17543997 [TBL] [Abstract][Full Text] [Related]
9. Encounters in predator-prey systems: a simple discrete model. Voit EO Biosystems; 1984; 17(1):57-63. PubMed ID: 6743794 [TBL] [Abstract][Full Text] [Related]
11. A note on exact solutions of two prey-predator equations. Burnside RR Bull Math Biol; 1982; 44(6):893-7. PubMed ID: 7159791 [No Abstract] [Full Text] [Related]
12. Harvesting in discrete-time predator-prey systems. Basson M; Fogarty MJ Math Biosci; 1997 Apr; 141(1):41-74. PubMed ID: 9077079 [TBL] [Abstract][Full Text] [Related]
13. Top predator persistence in differential equation models of food chains: the effects of omnivory and external forcing of lower trophic levels. Gard TC J Math Biol; 1982; 14(3):285-99. PubMed ID: 7119587 [TBL] [Abstract][Full Text] [Related]
14. A diffusive predator-prey system with prey refuge and predator cannibalism. Zhang YX; Rong XM; Zhang JM Math Biosci Eng; 2019 Feb; 16(3):1445-1470. PubMed ID: 30947428 [TBL] [Abstract][Full Text] [Related]
15. Predicting carrying capacity of a large carnivore from prey densities: a new approach. Chatterjee N; Mukhopadhyay I; Nigam P; Habib B PeerJ; 2023; 11():e15914. PubMed ID: 38025689 [TBL] [Abstract][Full Text] [Related]
17. The existence of stable equilibria in Volterra predator-prey systems represented by loop graphs. Solimano F Bull Math Biol; 1985; 47(4):489-94. PubMed ID: 4084687 [No Abstract] [Full Text] [Related]