These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 6619765)

  • 1. Adaptations for reflection of bioluminescent light in the gas bladder of Leiognathus equulus (Perciformes: Leiognathidae).
    McFall-Ngai MJ
    J Exp Zool; 1983 Jul; 227(1):23-33. PubMed ID: 6619765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External and internal sexual dimorphism in leiognathid fishes: morphological evidence for sex-specific bioluminescent signaling.
    McFall-Ngai MJ; Dunlap PV
    J Morphol; 1984 Oct; 182(1):71-83. PubMed ID: 6492170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution and diversification of a sexually dimorphic luminescent system in ponyfishes (Teleostei: Leiognathidae), including diagnoses for two new genera.
    Sparks JS; Dunlap PV; Smith WL
    Cladistics; 2005 Aug; 21(4):305-327. PubMed ID: 34892969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional morphology of the gas-gland cells of the air-bladder of Oreochromis alcalicus grahami (teleostei: cichlidae): an ultrastructural study on a fish adapted to a severe, highly alkaline environment.
    Maina JN
    Tissue Cell; 2000 Apr; 32(2):117-32. PubMed ID: 10855697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular phylogeny and possible scenario of ponyfish (Perciformes:Leiognathidae) evolution.
    Ikejima K; Ishiguro NB; Wada M; Kita-Tsukamoto K; Nishida M
    Mol Phylogenet Evol; 2004 Jun; 31(3):904-9. PubMed ID: 15120388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LuxA gene of light organ symbionts of the bioluminescent fish Acropoma japonicum (Acropomatidae) and Siphamia versicolor (Apogonidae) forms a lineage closely related to that of Photobacterium leiognathi ssp. mandapamensis.
    Wada M; Kamiya A; Uchiyama N; Yoshizawa S; Kita-Tsukamoto K; Ikejima K; Yu R; Imada C; Karatani H; Mizuno N; Suzuki Y; Nishida M; Kogure K
    FEMS Microbiol Lett; 2006 Jul; 260(2):186-92. PubMed ID: 16842343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the sound levels produced by bubble release of individual herring.
    Hahn TR; Thomas G
    J Acoust Soc Am; 2008 Sep; 124(3):1849-57. PubMed ID: 19045675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twenty ways to lose your bladder: common natural mutants in zebrafish and widespread convergence of swim bladder loss among teleost fishes.
    McCune AR; Carlson RL
    Evol Dev; 2004; 6(4):246-59. PubMed ID: 15230965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of the light organ system in ponyfishes (Teleostei: Leiognathidae).
    Chakrabarty P; Davis MP; Smith WL; Berquist R; Gledhill KM; Frank LR; Sparks JS
    J Morphol; 2011 Jun; 272(6):704-21. PubMed ID: 21433053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altering the purine specificity of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus by structure-based point mutations in the enzyme protein.
    Munagala NR; Wang CC
    Biochemistry; 1998 Nov; 37(47):16612-9. PubMed ID: 9843428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The first report of luminescent liver tissue in fishes: evolution and structure of bioluminescent organs in the deep-sea naked barracudinas (Aulopiformes: Lestidiidae).
    Ghedotti MJ; Barton RW; Simons AM; Davis MP
    J Morphol; 2015 Mar; 276(3):310-8. PubMed ID: 25408205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders.
    Daniels CB; Orgeig S; Sullivan LC; Ling N; Bennett MB; Schürch S; Val AL; Brauner CJ
    Physiol Biochem Zool; 2004; 77(5):732-49. PubMed ID: 15547792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Identification and quantitation of purine derivatives in urinary calculi as markers of abnormal purine metabolism by using high-performance liquid chromatography (HPLC)].
    Safranow K
    Ann Acad Med Stetin; 2000; 46():35-49. PubMed ID: 11712316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deactivation of triplet-excited riboflavin by purine derivatives: important role of uric acid in light-induced oxidation of milk sensitized by riboflavin.
    Cardoso DR; Homem-de-Mello P; Olsen K; da Silva AB; Franco DW; Skibsted LH
    J Agric Food Chem; 2005 May; 53(9):3679-84. PubMed ID: 15853419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal imaging of the sonic organ of Porichthys notatus, the singing midshipman fish.
    Forbes JG; Morris HD; Wang K
    Magn Reson Imaging; 2006 Apr; 24(3):321-31. PubMed ID: 16563962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Historical reconstructions of evolving physiological complexity: O2 secretion in the eye and swimbladder of fishes.
    Berenbrink M
    J Exp Biol; 2007 May; 210(Pt 9):1641-52. PubMed ID: 17449830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional anatomy of the swim-bladder in Notopterus (Lacepede).
    Singh SP
    Folia Morphol (Praha); 1978; 26(1):65-8. PubMed ID: 631655
    [No Abstract]   [Full Text] [Related]  

  • 18. The contribution of the swimbladder to buoyancy in the adult zebrafish (Danio rerio): a morphometric analysis.
    Robertson GN; Lindsey BW; Dumbarton TC; Croll RP; Smith FM
    J Morphol; 2008 Jun; 269(6):666-73. PubMed ID: 18302241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sound production mechanism in carapid fish: first example with a slow sonic muscle.
    Parmentier E; Lagardère JP; Braquegnier JB; Vandewalle P; Fine ML
    J Exp Biol; 2006 Aug; 209(Pt 15):2952-60. PubMed ID: 16857879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas exchange in fish swim bladder.
    Fänge R
    Rev Physiol Biochem Pharmacol; 1983; 97():111-58. PubMed ID: 6408725
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.