These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6619847)

  • 1. Loss of ascorbic acid from injured feline spinal cord.
    Pietronigro DD; Hovsepian M; Demopoulos HB; Flamm ES
    J Neurochem; 1983 Oct; 41(4):1072-6. PubMed ID: 6619847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbic acid: a putative biochemical marker of irreversible neurologic functional loss following spinal cord injury.
    Pietronigro DD; DeCrescito V; Tomasula JJ; Demopoulos HB; Flamm ES
    Cent Nerv Syst Trauma; 1985; 2(2):85-92. PubMed ID: 3830405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental spinal cord injury induced an increase of extracellular ascorbic acid concentration in anesthetized rats: a microdialysis study.
    Tsai PJ; Chen WY; Tzeng SF; Liang WM; Yang CS
    Clin Chim Acta; 2005 Dec; 362(1-2):94-100. PubMed ID: 16033694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of ascorbate autoxidation by the dialyzed soluble fraction of mammalian nervous tissues.
    Mishra OP; Kovachich GB
    Neurosci Lett; 1983 Dec; 43(1):103-8. PubMed ID: 6669317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord energy metabolism following compression trauma to the feline spinal cord.
    Anderson DK; Means ED; Waters TR; Spears CJ
    J Neurosurg; 1980 Sep; 53(3):375-80. PubMed ID: 7420153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium and calcium changes in injured spinal cords.
    Young W; Koreh I
    Brain Res; 1986 Feb; 365(1):42-53. PubMed ID: 3947986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Norepinephrine levels in traumatized spinal cord of catecholamine-depleted cats.
    Schoultz TW; De Luca DC; Reding DL
    Brain Res; 1976 Jun; 109(2):367-74. PubMed ID: 1276920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake and elimination of methylprednisolone from contused cat spinal cord following intravenous injection of the sodium succinate ester.
    Braughler JM; Hall ED
    J Neurosurg; 1983 Apr; 58(4):538-42. PubMed ID: 6338168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of impact trauma on neurotransmitter and nonneurotransmitter amino acids in rat spinal cord.
    Demediuk P; Daly MP; Faden AI
    J Neurochem; 1989 May; 52(5):1529-36. PubMed ID: 2565376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraparenchymal microdialysis after acute spinal cord injury reveals differential metabolic responses to contusive versus compressive mechanisms of injury.
    Okon EB; Streijger F; Lee JH; Anderson LM; Russell AK; Kwon BK
    J Neurotrauma; 2013 Sep; 30(18):1564-76. PubMed ID: 23768189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Injured Axons Using Two-Photon Excited Fluorescence Microscopy after Spinal Cord Contusion Injury in YFP-H Line Mice.
    Horiuchi H; Oshima Y; Ogata T; Morino T; Matsuda S; Miura H; Imamura T
    Int J Mol Sci; 2015 Jul; 16(7):15785-99. PubMed ID: 26184175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive metabolism of ascorbic acid in the central nervous system.
    Pietronigro DD; Hovsepian M; Demopoulos HB; Flamm ES
    Brain Res; 1985 Apr; 333(1):161-4. PubMed ID: 3995284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapeutic hypothermia effectively reduces elevated extracellular ascorbate concentrations caused by acute spinal cord injury.
    Zhang Y; Lv Y; Ji W; Zhou R; Gao S; Zhou F
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):22-29. PubMed ID: 30526134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism.
    Braughler JM; Hall ED
    J Neurosurg; 1984 Aug; 61(2):290-5. PubMed ID: 6539814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased levels of the excitotoxin quinolinic acid in spinal cord following contusion injury.
    Blight AR; Saito K; Heyes MP
    Brain Res; 1993 Dec; 632(1-2):314-6. PubMed ID: 8149236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord glucose utilization after experimental spinal cord injury.
    Rawe SE; Lee WA; Perot PL
    Neurosurgery; 1981 Jul; 9(1):40-7. PubMed ID: 7279171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Trk receptors following contusion of the rat spinal cord.
    Liebl DJ; Huang W; Young W; Parada LF
    Exp Neurol; 2001 Jan; 167(1):15-26. PubMed ID: 11161589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased protein oxidation and decreased creatine kinase BB expression and activity after spinal cord contusion injury.
    Aksenova M; Butterfield DA; Zhang SX; Underwood M; Geddes JW
    J Neurotrauma; 2002 Apr; 19(4):491-502. PubMed ID: 11990354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The time course of hydroxyl radical formation following spinal cord injury: the possible role of the iron-catalyzed Haber-Weiss reaction.
    Liu D; Liu J; Sun D; Wen J
    J Neurotrauma; 2004 Jun; 21(6):805-16. PubMed ID: 15253806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LPA receptor expression in the central nervous system in health and following injury.
    Goldshmit Y; Munro K; Leong SY; Pébay A; Turnley AM
    Cell Tissue Res; 2010 Jul; 341(1):23-32. PubMed ID: 20495828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.