These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 6619882)

  • 1. Changes in brain glycogen during slow-wave sleep in the rat.
    Karnovsky ML; Reich P; Anchors JM; Burrows BL
    J Neurochem; 1983 Nov; 41(5):1498-501. PubMed ID: 6619882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle.
    Netchiporouk L; Shram N; Salvert D; Cespuglio R
    Eur J Neurosci; 2001 Apr; 13(7):1429-34. PubMed ID: 11298804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of repeated audiogenic convulsions on the organization of sleep in rats.
    Vataev SI
    Neurosci Behav Physiol; 2006 Sep; 36(7):729-35. PubMed ID: 16841153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory rhythm multistability during sleep-wake states.
    Vibert JF; Foutz AS; Caille D; Hugelin A
    Brain Res; 1988 May; 448(2):403-5. PubMed ID: 3378166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain glycogen re-awakened.
    Brown AM
    J Neurochem; 2004 May; 89(3):537-52. PubMed ID: 15086511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Oscillations in the oxidation-reduction potential of the brain tissue in rats developing during wakefulness and slow-wave sleep].
    Shvets-Ténéta-Guriĭ TB; Troshin GI; Dubinin AG; Novikova MR
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2000; 50(2):261-73. PubMed ID: 10822845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep.
    Kong J; Shepel PN; Holden CP; Mackiewicz M; Pack AI; Geiger JD
    J Neurosci; 2002 Jul; 22(13):5581-7. PubMed ID: 12097509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological properties of raphe magnus neurons during sleep and waking.
    Leung CG; Mason P
    J Neurophysiol; 1999 Feb; 81(2):584-95. PubMed ID: 10036262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian and sleep episode duration influences on cognitive performance following the process of awakening.
    Matchock RL
    Int Rev Neurobiol; 2010; 93():129-51. PubMed ID: 20970004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Local brain consumption of glucose during waking and slow wave sleep in the cat].
    Petitjean F; Seguin S; des Rosiers MH; Salvert D; Buda C; Janin M; Debilly G; Jouvet M; Bobillier P
    C R Seances Acad Sci III; 1981 Jun; 292(23):1211-4. PubMed ID: 6793216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serum hormone levels during sleep and wakefulness in the immature female rat.
    Kimura F; Kawakami M
    Neuroendocrinology; 1981 Nov; 33(5):276-83. PubMed ID: 7301049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sleep regulation in the Djungarian hamster: comparison of the dynamics leading to the slow-wave activity increase after sleep deprivation and daily torpor.
    Deboer T; Tobler I
    Sleep; 2003 Aug; 26(5):567-72. PubMed ID: 12938809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Duration of sleep inertia after napping during simulated night work and in extended operations.
    Signal TL; van den Berg MJ; Mulrine HM; Gander PH
    Chronobiol Int; 2012 Jul; 29(6):769-79. PubMed ID: 22734577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of NADH in the rat brain during sleep-wake states with an optic fibre sensor and time-resolved fluorescence procedures.
    Mottin S; Laporte P; Jouvet M; Cespuglio R
    Neuroscience; 1997 Aug; 79(3):683-93. PubMed ID: 9219933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The energy hypothesis of sleep revisited.
    Scharf MT; Naidoo N; Zimmerman JE; Pack AI
    Prog Neurobiol; 2008 Nov; 86(3):264-80. PubMed ID: 18809461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory deprivation modifies sleep in the guinea-pig.
    Pedemonte M; Peña JL; Torterolo P; Velluti RA
    Neurosci Lett; 1997 Feb; 223(1):1-4. PubMed ID: 9058408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diurnal changes in electrocorticogram sleep slow-wave activity during development in rats.
    Olini N; Huber R
    J Sleep Res; 2014 Jun; 23(3):261-7. PubMed ID: 24456043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes in the sleep-wakefulness cycle in experimental Parkinson's syndrome].
    Shandra AA; Godlevskiĭ LS; Makul'kin RF; Mazarati AM; Lefter'ev RN
    Patol Fiziol Eksp Ter; 1990; (5):6-9. PubMed ID: 2293170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of memantine on convulsive reactions and sleep-waking cycle in Krushinskiĭ-Molodkina strain rats with the inherited predisposition to audiogenic convulsions].
    Vataev SI; Zhabko EP; Lukomskaia NIa; Oganesian GA; Magazanik LG
    Ross Fiziol Zh Im I M Sechenova; 2009 Aug; 95(8):802-12. PubMed ID: 19803209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of non-rapid eye movement slow-wave activity in prefrontal metabolism across young and middle-aged adults.
    Wilckens KA; Aizenstein HJ; Nofzinger EA; James JA; Hasler BP; Rosario-Rivera BL; Franzen PL; Germain A; Hall MH; Kupfer DJ; Price JC; Siegle GJ; Buysse DJ
    J Sleep Res; 2016 Jun; 25(3):296-306. PubMed ID: 26853796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.