These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 6619882)

  • 21. Influence of a GABA(B) receptor antagonist on the sleep-waking cycle in the rat.
    Gauthier P; Arnaud C; Gandolfo G; Gottesmann C
    Brain Res; 1997 Oct; 773(1-2):8-14. PubMed ID: 9409699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of somatosensory evoked potentials during wake-sleep states and spike-wave discharges in the rat.
    Shaw FZ; Lee SY; Chiu TH
    Sleep; 2006 Mar; 29(3):285-93. PubMed ID: 16553013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nociceptive responsiveness during slow-wave sleep and waking in the rat.
    Mason P; Escobedo I; Burgin C; Bergan J; Lee JH; Last EJ; Holub AL
    Sleep; 2001 Feb; 24(1):32-8. PubMed ID: 11204051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scatterplot analysis of EEG slow-wave magnitude and heart rate variability: an integrative exploration of cerebral cortical and autonomic functions.
    Kuo TB; Yang CC
    Sleep; 2004 Jun; 27(4):648-56. PubMed ID: 15282999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waking and sleep electroencephalogram variables as human sleep homeostatic process biomarkers after drug administration.
    Giménez S; Romero S; Mañanas MA; Barbanoj MJ
    Neuropsychobiology; 2011; 63(4):252-60. PubMed ID: 21494053
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep--wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats.
    Léna I; Parrot S; Deschaux O; Muffat-Joly S; Sauvinet V; Renaud B; Suaud-Chagny MF; Gottesmann C
    J Neurosci Res; 2005 Sep; 81(6):891-9. PubMed ID: 16041801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The effect of multiple audiogenic seizures upon the sleep organization in rats].
    Vataev SI
    Ross Fiziol Zh Im I M Sechenova; 2005 Jul; 91(7):740-51. PubMed ID: 16206617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Experimental hepatic encephalopathy. Study of the organization of a diurnal sleep pattern in rats with portocaval anastomosis].
    Beaubernard C; Salomon F; Bismuth H
    Biomedicine; 1980 May; 32(2):76-80. PubMed ID: 7190038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 5-Hydroxyindoles compounds and nitric oxide voltammetric detection in the rat brain: changes occurring throughout the sleep-wake cycle.
    Cespuglio R; Burlet S; Faradji-Prevautel H
    J Neural Transm (Vienna); 1998; 105(2-3):205-15. PubMed ID: 9660098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of chloramphenicol on brain energy metabolism using 31P spectroscopy: influences on sleep-wake states in rat.
    Chahboune H; Mahdjoub R; Desgoutte P; Rousset C; Briguet A; Cespuglio R
    J Neurochem; 2008 Aug; 106(4):1552-62. PubMed ID: 18507739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EEG Functional Connectivity Prior to Sleepwalking: Evidence of Interplay Between Sleep and Wakefulness.
    Desjardins MÈ; Carrier J; Lina JM; Fortin M; Gosselin N; Montplaisir J; Zadra A
    Sleep; 2017 Apr; 40(4):. PubMed ID: 28204773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of neonatal focal cerebral hypoxia-ischemia on sleep-waking pattern, ECoG power spectra and locomotor activity in the adult rat.
    Antier D; Zhang BL; Mailliet F; Akoka S; Pourcelot L; Sannajust F
    Brain Res; 1998 Oct; 807(1-2):29-37. PubMed ID: 9756989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Dynamics of unit activity of the gigantocellular tegmental field in the sleep-wakefulness cycle of rats].
    Gvetadze LB; Mandzhevidze ShD; Oniani TN
    Fiziol Zh SSSR Im I M Sechenova; 1988 Jan; 74(1):32-40. PubMed ID: 3356265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Evolution of visual evoked responses during various states of vigilance in Papio papio (author's transl)].
    Vuillon-Cacciuttolo G; Balzamo E; Naquet R
    Brain Res; 1975 Dec; 100(3):509-21. PubMed ID: 172195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liver temperature during sleep.
    Dewasmes G; Loos N; Delanaud S; Ramadan W; Dewasmes D
    Sleep; 2003 Dec; 26(8):948-50. PubMed ID: 14746373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local awakening: regional reorganizations of brain oscillations after sleep.
    Tsai PJ; Chen SC; Hsu CY; Wu CW; Wu YC; Hung CS; Yang AC; Liu PY; Biswal B; Lin CP
    Neuroimage; 2014 Nov; 102 Pt 2():894-903. PubMed ID: 25067818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Burst and tonic response modes in thalamic neurons during sleep and wakefulness.
    Weyand TG; Boudreaux M; Guido W
    J Neurophysiol; 2001 Mar; 85(3):1107-18. PubMed ID: 11247981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurochemical aspects of sleep regulation with specific focus on slow-wave sleep.
    Luppi PH
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():4-8. PubMed ID: 20509826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Voltammetric detection of extracellular 5-hydroxyindole compounds at the level of cell bodies and the terminals of the raphe system: variations during the wake-sleep cycle in the rat in chronic experiments].
    Cespuglio R; Faradji H; Jouvet M
    C R Seances Acad Sci III; 1983; 296(13):611-6. PubMed ID: 6193846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novelty-induced correlation between visual neurons and the hippocampal theta rhythm in sleep and wakefulness.
    Pedemonte M; Gambini JP; Velluti RA
    Brain Res; 2005 Nov; 1062(1-2):9-15. PubMed ID: 16248987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.