BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6621235)

  • 1. Cochlear aqueduct radiographic anatomy in temporal bone preparations and in sudden hearing loss.
    Strauss M; Aufiero T; Varano L
    Laryngoscope; 1983 Oct; 93(10):1341-4. PubMed ID: 6621235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Major and minor temporal bone abnormalities in children with and without congenital sensorineural hearing loss.
    McClay JE; Tandy R; Grundfast K; Choi S; Vezina G; Zalzal G; Willner A
    Arch Otolaryngol Head Neck Surg; 2002 Jun; 128(6):664-71. PubMed ID: 12049561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enlargement of the cochlear aqueduct: does it exist?
    Stimmer H
    Eur Arch Otorhinolaryngol; 2011 Nov; 268(11):1655-61. PubMed ID: 21340558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enlarged vestibular aqueduct in pediatric sensorineural hearing loss.
    Dewan K; Wippold FJ; Lieu JE
    Otolaryngol Head Neck Surg; 2009 Apr; 140(4):552-8. PubMed ID: 19328346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two temporal bone computed tomography measurements increase recognition of malformations and predict sensorineural hearing loss.
    Purcell DD; Fischbein NJ; Patel A; Johnson J; Lalwani AK
    Laryngoscope; 2006 Aug; 116(8):1439-46. PubMed ID: 16885750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalence of labyrinthine ossification in CT and MR imaging of patients with acute deafness to severe sensorineural hearing loss.
    Braun T; Dirr F; Berghaus A; Hempel JM; Krause E; Müller J; Ertl-Wagner B
    Int J Audiol; 2013 Jul; 52(7):495-9. PubMed ID: 23713470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk analysis of unilateral severe-to-profound sensorineural hearing loss in children.
    Friedman AB; Guillory R; Ramakrishnaiah RH; Frank R; Gluth MB; Richter GT; Dornhoffer JL
    Int J Pediatr Otorhinolaryngol; 2013 Jul; 77(7):1128-31. PubMed ID: 23701899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unilateral sensorineural hearing loss in children: the importance of temporal bone computed tomography and audiometric follow-up.
    Song JJ; Choi HG; Oh SH; Chang SO; Kim CS; Lee JH
    Otol Neurotol; 2009 Aug; 30(5):604-8. PubMed ID: 19546828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Resolution Computed Tomography of the Inner Ear: Effect of Otosclerosis on Cochlear Aqueduct Dimensions.
    Wichova H; Alvi S; Boatright C; Ledbetter L; Staecker H; Lin J
    Ann Otol Rhinol Laryngol; 2019 Aug; 128(8):749-754. PubMed ID: 30971097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High prevalence of inner-ear and/or internal auditory canal malformations in children with unilateral sensorineural hearing loss.
    Masuda S; Usui S; Matsunaga T
    Int J Pediatr Otorhinolaryngol; 2013 Feb; 77(2):228-32. PubMed ID: 23200870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new classification for cochleovestibular malformations.
    Sennaroglu L; Saatci I
    Laryngoscope; 2002 Dec; 112(12):2230-41. PubMed ID: 12461346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proportion of bony cochlear nerve canal anomalies in unilateral sensorineural hearing loss in children.
    Yi JS; Lim HW; Kang BC; Park SY; Park HJ; Lee KS
    Int J Pediatr Otorhinolaryngol; 2013 Apr; 77(4):530-3. PubMed ID: 23352796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computed tomography of common congenital lesions of the temporal bone.
    Yuen HY; Ahuja AT; Wong KT; Yue V; van Hasselt AC
    Clin Radiol; 2003 Sep; 58(9):687-93. PubMed ID: 12943639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computed tomography demonstrates abnormalities of contralateral ear in subjects with unilateral sensorineural hearing loss.
    Marcus S; Whitlow CT; Koonce J; Zapadka ME; Chen MY; Williams DW; Lewis M; Evans AK
    Int J Pediatr Otorhinolaryngol; 2014 Feb; 78(2):268-71. PubMed ID: 24359976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiographic classification of the vestibular and cochlear aqueducts: the paired correlation between normal and abnormal vestibular aqueduct and cochlear aqueduct anatomy.
    Arenberg IK; Dupatrocinio I; Dreisbach JM; Seibert C
    Laryngoscope; 1984 Oct; 94(10):1325-33. PubMed ID: 6332960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of high resolution computed tomography and gross anatomic sections of the temporal bone. Part III. Cochlear and vestibular aqueducts.
    Cooper MH; Archer CR; Kveton JF
    Am J Otol; 1989 Jul; 10(4):272-6. PubMed ID: 2801891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patency of the cochlear aqueduct.
    Muren C; Vignaud J; Wilbrand H; Wilbrand S
    Acta Radiol Diagn (Stockh); 1985; 26(5):543-50. PubMed ID: 4072748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enlarged cochlear aqueducts: a potential route for CSF gushers in patients with enlarged vestibular aqueducts.
    Kim BG; Sim NS; Kim SH; Kim UK; Kim S; Choi JY
    Otol Neurotol; 2013 Dec; 34(9):1660-5. PubMed ID: 24232063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cochlear-carotid interval: anatomic variation and potential clinical implications.
    Young RJ; Shatzkes DR; Babb JS; Lalwani AK
    AJNR Am J Neuroradiol; 2006 Aug; 27(7):1486-90. PubMed ID: 16908564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomic variations of the human cochlear aqueduct. A radioanatomic investigation.
    Muren C; Wilbrand H
    Acta Radiol Diagn (Stockh); 1986; 27(1):11-8. PubMed ID: 3962712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.