BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 6622)

  • 21. [Effect of culture media and oxygen partial pressure on growth, morphology and cytology of Candida albicans in vitro].
    Preusser HJ; Rostek H
    Mykosen; 1983 Oct; 26(10):501-12. PubMed ID: 6361550
    [No Abstract]   [Full Text] [Related]  

  • 22. Growth of pathogenic Candida isolates anaerobically and under elevated concentrations of CO2 in air.
    Webster CE; Odds FC
    J Med Vet Mycol; 1987 Feb; 25(1):47-53. PubMed ID: 3106612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating cell specific oxygen uptake and carbon dioxide production rates for mammalian cells in perfusion culture.
    Goudar CT; Piret JM; Konstantinov KB
    Biotechnol Prog; 2011; 27(5):1347-57. PubMed ID: 21626724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of oxygen and glucose on energy metabolism and dimorphism of Mucor genevensis grown in continuous culture: reversibility of yeast-mycelium conversion.
    Rogers PJ; Clark-Walker GD; Stewart PR
    J Bacteriol; 1974 Jul; 119(1):282-93. PubMed ID: 4152122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proline-induced germ-tube formation in Candida albicans: role of proline uptake and nitrogen metabolism.
    Holmes AR; Shepherd MG
    J Gen Microbiol; 1987 Nov; 133(11):3219-28. PubMed ID: 3328774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling aerobic carbon source degradation processes using titrimetric data and combined respirometric-titrimetric data: experimental data and model structure.
    Gernaey K; Petersen B; Nopens I; Comeau Y; Vanrolleghem PA
    Biotechnol Bioeng; 2002 Sep; 79(7):741-53. PubMed ID: 12209797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Change in the respiration system of Candida albicans in the lag and log growth phase.
    Ogasawara A; Odahara K; Toume M; Watanabe T; Mikami T; Matsumoto T
    Biol Pharm Bull; 2006 Mar; 29(3):448-50. PubMed ID: 16508143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors influencing the susceptibility of Candida albicans to the polyenoic antibiotics nystatin and amphotericin B.
    Johnson B; White RJ; Williamson GM
    J Gen Microbiol; 1978 Feb; 104(2):325-33. PubMed ID: 24676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth and acid production of Candida albicans in carbohydrate supplemented media.
    Samaranayake LP; Geddes DA; Weetman DA; MacFarlane TW
    Microbios; 1983; 37(148):105-15. PubMed ID: 6353167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon dioxide induces endotrophic germ tube formation in Candida albicans.
    Mock RC; Pollack JH; Hashimoto T
    Can J Microbiol; 1990 Apr; 36(4):249-53. PubMed ID: 2162728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling aerobic carbon source degradation processes using titrimetric data and combined respirometric-titrimetric data: structural and practical identifiability.
    Gernaey K; Petersen B; Dochain D; Vanrolleghem PA
    Biotechnol Bioeng; 2002 Sep; 79(7):754-67. PubMed ID: 12209798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of polar lipids from yeast and mycelial forms of Candida albicans and Candida dubliniensis.
    Mahmoudabadi AZ; Drucker DB
    Mycoses; 2006 Jan; 49(1):18-22. PubMed ID: 16367813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Some factors affecting the transformation of the yeast-like to the mycelial-like forms of Candida albicans.
    Ton SH; Karunairatnam MC
    Southeast Asian J Trop Med Public Health; 1976 Mar; (1):72-6. PubMed ID: 800285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth of Candida albicans in normal and altered faecal flora in the model of continuous flow culture.
    Bernhardt H; Wellmer A; Zimmermann K; Knoke M
    Mycoses; 1995; 38(7-8):265-70. PubMed ID: 8559187
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of pH, temperature, aeration and carbon source on the development of the mycelial or yeast forms of Sporothrix schenckii from conidia.
    Rodriguez-Del Valle N; Rosario M; Torres-Blasini G
    Mycopathologia; 1983 May; 82(2):83-8. PubMed ID: 6888501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dimorphism-associated variations in the lipid composition of Candida albicans.
    Ghannoum MA; Janini G; Khamis L; Radwan SS
    J Gen Microbiol; 1986 Aug; 132(8):2367-75. PubMed ID: 3540201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of temperature, pH and dissolved oxygen concentration on enhanced biological phosphorus removal under strictly aerobic conditions.
    Nittami T; Oi H; Matsumoto K; Seviour RJ
    N Biotechnol; 2011 Dec; 29(1):2-8. PubMed ID: 21718809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose influence on germ tube production in Candida albicans.
    Vidotto V; Accattatis G; Zhang Q; Campanini G; Aoki S
    Mycopathologia; 1996; 133(3):143-7. PubMed ID: 8817932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans.
    Cassone A; Sullivan PA; Shepherd MG
    Microbiologica; 1985 Jan; 8(1):85-99. PubMed ID: 3883103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anaerobiosis and serum promote mycelium formation by Candida albicans in colonies on TSBV agar.
    Dahle UR; Olsen I
    Acta Odontol Scand; 1991 Feb; 49(1):41-5. PubMed ID: 2024574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.