These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6622289)

  • 41. The effects of atrial natriuretic peptide on passive avoidance behaviour in rats.
    Bidzseranova A; Telegdy G; Penke B
    Brain Res Bull; 1991 Jan; 26(1):177-80. PubMed ID: 1826628
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Drug-induced elevation of vasopressin-like immunoreactivity in Raphe and septal regions of the mouse CNS.
    Leccese AP
    Neuroendocrinology; 1983 Dec; 37(6):411-5. PubMed ID: 6361596
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intracerebroventricular histamine, but not 48/80, causes posttraining memory facilitation in the rat.
    de Almeida MA; Izquierdo I
    Arch Int Pharmacodyn Ther; 1988; 291():202-7. PubMed ID: 3365062
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitric oxide modulates state dependency induced by lithium in an inhibitory avoidance task in mice.
    Zarrindast MR; Shendy MM; Ahmadi S
    Behav Pharmacol; 2007 Jul; 18(4):289-95. PubMed ID: 17551321
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Can vasopressin alone act as an unconditioned stimulus to produce passive avoidance behaviour in rats in a typical memory experiment?
    Ebenezer IS
    Neuropharmacology; 1988 Sep; 27(9):903-7. PubMed ID: 3185866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Amnesia produced by intracerebroventricular injections of hemicholinium-3 in mice was prevented by pretreatment with piracetam-like compounds.
    Franklin SR; Sethy VH; Tang AH
    Pharmacol Biochem Behav; 1986 Oct; 25(4):925-7. PubMed ID: 3786350
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Negative and positive effects of intracerebroventricular scopolamine on memory in mice undergoing passive avoidance and escape tests.
    Nakajima M; Inui A; Miura M; Hirosue Y; Okita M; Himori N; Baba S; Kasuga M
    Brain Res Bull; 1994; 34(4):375-80. PubMed ID: 8082028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Brain catecholamines modifications. The effects on memory facilitation induced by oxotremorine in mice.
    Huygens P; Baratti CM; Gardella JL; Filinger E
    Psychopharmacology (Berl); 1980; 69(3):291-4. PubMed ID: 6774370
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Consummatory behavior and urine production after cerebroventricular injection of vasopressin and vasopressin antiserum.
    Severs WB; Keil LC; Klase PA
    Eur J Pharmacol; 1978 Oct; 51(4):389-96. PubMed ID: 710511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Failure of vasopressin to enhance memory in a passive avoidance task in rats.
    Sahgal A; Keith AB; Wright C; Edwardson JA
    Neurosci Lett; 1982 Jan; 28(1):87-92. PubMed ID: 7063145
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microinjection of arginine8-vasopressin antiserum into the dorsal hippocampus attenuates passive avoidance behavior in rats.
    Kovács GL; Buijs RM; Bohus B; van Wimersma Greidanus TB
    Physiol Behav; 1982 Jan; 28(1):45-8. PubMed ID: 7079322
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynorphin A-(1-13) potently improves scopolamine-induced impairment of passive avoidance response in mice.
    Ukai M; Kobayashi T; Shinkai N; Shan-Wu X; Kameyama T
    Eur J Pharmacol; 1995 Feb; 274(1-3):89-93. PubMed ID: 7768285
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modulation of memory retrieval by pre-testing vasopressin: involvement of a central cholinergic nicotinic mechanism.
    Faiman CP; de Erausquin GA; Baratti CM
    Methods Find Exp Clin Pharmacol; 1992 Oct; 14(8):607-13. PubMed ID: 1494301
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium channel antagonists enhance retention of passive avoidance and maze learning in mice.
    Quartermain D; deSoria VG; Kwan A
    Neurobiol Learn Mem; 2001 Jan; 75(1):77-90. PubMed ID: 11124048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Passive avoidance behavior, vasopressin and the immune system. A link between avoidance latency and immune response.
    Croiset G; Heijnen CJ; de Wied D
    Neuroendocrinology; 1990 Feb; 51(2):156-61. PubMed ID: 2106096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Participation of angiotensin II in learning and memory. I. Interaction of angiotensin II with saralasin.
    Georgiev V; Yonkov D
    Methods Find Exp Clin Pharmacol; 1985 Aug; 7(8):415-8. PubMed ID: 4079591
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intra-cerebellar microinjection of histamine enhances memory consolidation of inhibitory avoidance learning in mice via H2 receptors.
    Gianlorenço AC; Canto-de-Souza A; Mattioli R
    Neurosci Lett; 2013 Dec; 557 Pt B():159-64. PubMed ID: 24161893
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of lysine vasopressin on pentylenetetrazol-induced retrograde amnesia in rats.
    Bookin HB; Pfeifer WD
    Pharmacol Biochem Behav; 1977 Jul; 7(1):51-4. PubMed ID: 561964
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of chronic GM1 ganglioside administration on passive avoidance retention in mice.
    Fagioli S; Castellano C; Oliverio A; Toffano G
    Neurosci Lett; 1990 Feb; 109(1-2):212-6. PubMed ID: 2314637
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure activity relationship studies with C-terminal fragments of vasopressin and oxytocin on avoidance behaviors of rats.
    de Wied D; Gaffori O; Burbach JP; Kovács GL; van Ree JM
    J Pharmacol Exp Ther; 1987 Apr; 241(1):268-74. PubMed ID: 3572787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.