These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 6622507)

  • 21. Dissociation of the attentional and motivational effects of pimozide on the threshold for rewarding brain stimulation.
    Bird M; Kornetsky C
    Neuropsychopharmacology; 1990 Feb; 3(1):33-40. PubMed ID: 2137697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic differences in delta 9-tetrahydrocannabinol-induced facilitation of brain stimulation reward as measured by a rate-frequency curve-shift electrical brain stimulation paradigm in three different rat strains.
    Lepore M; Liu X; Savage V; Matalon D; Gardner EL
    Life Sci; 1996; 58(25):PL365-72. PubMed ID: 8649214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reward and detection thresholds for brain stimulation: dissociative effects of cocaine.
    Kornetsky C; Esposito RU
    Brain Res; 1981 Mar; 209(2):496-500. PubMed ID: 6971689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bromocriptine, a D2 receptor agonist, lowers the threshold for rewarding brain stimulation.
    Knapp CM; Kornetsky C
    Pharmacol Biochem Behav; 1994 Dec; 49(4):901-4. PubMed ID: 7886105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lowered brain stimulation reward thresholds in rats treated with a combination of caffeine and N-methyl-D-aspartate but not alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate or metabotropic glutamate receptor-5 receptor antagonists.
    Bespalov A; Dravolina O; Belozertseva I; Adamcio B; Zvartau E
    Behav Pharmacol; 2006 Jun; 17(4):295-302. PubMed ID: 16914947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of amfonelic acid or nisoxetine in combination with morphine on brain-stimulation reward.
    Izenwasser S; Kornetsky C
    Pharmacol Biochem Behav; 1989 Apr; 32(4):983-6. PubMed ID: 2798547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Levonantradol-induced inhibition of acetylcholine turnover in rat hippocampus and striatum.
    Costa E; Cheney DL; Murray TF
    J Clin Pharmacol; 1981; 21(S1):256S-261S. PubMed ID: 6271831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early developmental exposure to methylphenidate reduces cocaine-induced potentiation of brain stimulation reward in rats.
    Mague SD; Andersen SL; Carlezon WA
    Biol Psychiatry; 2005 Jan; 57(2):120-5. PubMed ID: 15652869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nicotine and brain-stimulation reward: interactions with morphine, amphetamine and pimozide.
    Huston-Lyons D; Sarkar M; Kornetsky C
    Pharmacol Biochem Behav; 1993 Oct; 46(2):453-7. PubMed ID: 8265701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats.
    Todtenkopf MS; Marcus JF; Portoghese PS; Carlezon WA
    Psychopharmacology (Berl); 2004 Apr; 172(4):463-70. PubMed ID: 14727002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of cocaine and GBR-12909 on brain stimulation reward.
    Maldonado-Irizarry CS; Stellar JR; Kelley AE
    Pharmacol Biochem Behav; 1994 Aug; 48(4):915-20. PubMed ID: 7972296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of morphine, levonantradol, and N-methyllevonantradol on shock intensity discrimination.
    Dykstra LA
    J Clin Pharmacol; 1981; 21(S1):341S-347S. PubMed ID: 7298872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A simple and economical method of electrode fabrication for brain self-stimulation in rats.
    Desai SJ; Bharne AP; Upadhya MA; Somalwar AR; Subhedar NK; Kokare DM
    J Pharmacol Toxicol Methods; 2014; 69(2):141-9. PubMed ID: 24406399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CaV
    Waraczynski M; Abbott S; Schultz AV
    Behav Brain Res; 2017 Jan; 317():485-493. PubMed ID: 27743939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrolytic lesions of the cortical and adjacent nuclei in the amygdala differentially influence thresholds for rewarding medial forebrain bundle stimulation.
    Bielajew C; Miguelez M; Shiao R
    Behav Neurosci; 2002 Aug; 116(4):660-71. PubMed ID: 12148933
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of the dorsal diencephalic conduction system in the brain reward circuitry.
    Fakhoury M; Rompré PP; Boye SM
    Behav Brain Res; 2016 Jan; 296():431-441. PubMed ID: 26515931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ethanol oral self-administration and rewarding brain stimulation.
    Bain GT; Kornetsky C
    Alcohol; 1989; 6(6):499-503. PubMed ID: 2597352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brain reward deficits accompany naloxone-precipitated withdrawal from acute opioid dependence.
    Liu J; Schulteis G
    Pharmacol Biochem Behav; 2004 Sep; 79(1):101-8. PubMed ID: 15388289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interhemispheric involvement of the anterior cortical nuclei of the amygdala in rewarding brain stimulation.
    Miguelez M; Kentner AC; Deslauriers K; Parkinson M; Fouriezos G; Bielajew C
    Brain Res; 2004 Apr; 1003(1-2):138-50. PubMed ID: 15019573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection thresholds for electrical stimulation of forebrain and midbrain loci in the rat.
    Wheeling HS; Kornetsky C
    Brain Res; 1983 Aug; 272(1):13-9. PubMed ID: 6311336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.