These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 662299)
1. Energetics of amputee gait. Sulzle H; Pagliarulo M; Rodgers M; Jordan C Orthop Clin North Am; 1978 Apr; 9(2):358-62. PubMed ID: 662299 [No Abstract] [Full Text] [Related]
2. Analysis and evaluation of functional status of lower extremity amputee-appliance systems: an integrated approach. Ganguli S Biomed Eng; 1976 Nov; 11(11):380-2. PubMed ID: 990361 [TBL] [Abstract][Full Text] [Related]
3. Energy expenditure in below-knee amputees: correlation with stump length. Gonzalez EG; Corcoran PJ; Reyes RL Arch Phys Med Rehabil; 1974 Mar; 55(3):111-9. PubMed ID: 4817680 [No Abstract] [Full Text] [Related]
4. Prediction of energy cost from peak heart rate in lower extremity amputees. Ganguli S; Datta SR Biomed Eng; 1975 Feb; 10(2):52-5. PubMed ID: 1115831 [TBL] [Abstract][Full Text] [Related]
5. Relationship between energy cost, gait speed, vertical displacement of centre of body mass and efficiency of pendulum-like mechanism in unilateral amputee gait. Detrembleur C; Vanmarsenille JM; De Cuyper F; Dierick F Gait Posture; 2005 Apr; 21(3):333-40. PubMed ID: 15760750 [TBL] [Abstract][Full Text] [Related]
6. The prediction of metabolic energy expenditure during gait from mechanical energy of the limb: a preliminary study. Foerster SA; Bagley AM; Mote CD; Skinner HB J Rehabil Res Dev; 1995 May; 32(2):128-34. PubMed ID: 7562652 [TBL] [Abstract][Full Text] [Related]
7. Reproducibility in bicycle ergometry (one-leg) and in prosthetic and normal treadmill walking. James U; Nordgren B Scand J Rehabil Med; 1974; 6(1):15-8. PubMed ID: 4826159 [No Abstract] [Full Text] [Related]
8. Energy expenditure during walking in patients recovering from fractures of the leg. Imms FJ; MacDonald IC; Prestidge SP Scand J Rehabil Med; 1976; 8(1):1-9. PubMed ID: 935837 [TBL] [Abstract][Full Text] [Related]
10. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. Torburn L; Powers CM; Guiterrez R; Perry J J Rehabil Res Dev; 1995 May; 32(2):111-9. PubMed ID: 7562650 [TBL] [Abstract][Full Text] [Related]
11. The energy cost for the step-to-step transition in amputee walking. Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J Clin Rehabil; 2008; 22(10-11):896-901. PubMed ID: 18955421 [TBL] [Abstract][Full Text] [Related]
13. Energy cost of ambulation in health and disability: a literature review. Fisher SV; Gullickson G Arch Phys Med Rehabil; 1978 Mar; 59(3):124-33. PubMed ID: 148252 [TBL] [Abstract][Full Text] [Related]
14. A comparative study of the physiological costs of walking in ten bilateral amputees. Wright DA; Marks L; Payne RC Prosthet Orthot Int; 2008 Mar; 32(1):57-67. PubMed ID: 18330804 [TBL] [Abstract][Full Text] [Related]
18. Oxygen uptake and heart rate during prosthetic walking in healthy male unilateral above-knee amputees. James U Scand J Rehabil Med; 1973; 5(2):71-80. PubMed ID: 4695243 [No Abstract] [Full Text] [Related]
19. SOCKET FLEXION AND GAIT OF AN ABOVE-KNEE, BILATERAL AMPUTEE. PEIZER E Artif Limbs; 1963; 7():43-9. PubMed ID: 14073469 [No Abstract] [Full Text] [Related]
20. Innovations in care of the amputee. Mooney V Tex Med; 1979 Apr; 75(4):43-7. PubMed ID: 441971 [No Abstract] [Full Text] [Related] [Next] [New Search]