These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 662302)

  • 1. Energetics of walking and wheelchair propulsion in paraplegic patients.
    Cerny K
    Orthop Clin North Am; 1978 Apr; 9(2):370-2. PubMed ID: 662302
    [No Abstract]   [Full Text] [Related]  

  • 2. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of wheelchair propulsion and walking in stroke patients.
    Hash D
    Orthop Clin North Am; 1978 Apr; 9(2):372-4. PubMed ID: 662303
    [No Abstract]   [Full Text] [Related]  

  • 4. Filter frequency selection for manual wheelchair biomechanics.
    Cooper RA; DiGiovine CP; Boninger ML; Shimada SD; Koontz AM; Baldwin MA
    J Rehabil Res Dev; 2002; 39(3):323-36. PubMed ID: 12173753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological response to the ambulatory performance of hand-rim and arm-crank propulsion systems.
    Mukherjee G; Samanta A
    J Rehabil Res Dev; 2001; 38(4):391-9. PubMed ID: 11563492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics of wheelchair propulsion during fatigue.
    Rodgers MM; Gayle GW; Figoni SF; Kobayashi M; Lieh J; Glaser RM
    Arch Phys Med Rehabil; 1994 Jan; 75(1):85-93. PubMed ID: 8291970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of visual biofeedback on the propulsion effectiveness of experienced wheelchair users.
    Kotajarvi BR; Basford JR; An KN; Morrow DA; Kaufman KR
    Arch Phys Med Rehabil; 2006 Apr; 87(4):510-5. PubMed ID: 16571390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Walking and wheelchair energetics in persons with paraplegia.
    Cerny D; Waters R; Hislop H; Perry J
    Phys Ther; 1980 Sep; 60(9):1133-9. PubMed ID: 7413741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy cost of paraplegic locomotion.
    Waters RL; Lunsford BR
    J Bone Joint Surg Am; 1985 Oct; 67(8):1245-50. PubMed ID: 4055849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power-assisted wheels ease energy costs and perceptual responses to wheelchair propulsion in persons with shoulder pain and spinal cord injury.
    Nash MS; Koppens D; van Haaren M; Sherman AL; Lippiatt JP; Lewis JE
    Arch Phys Med Rehabil; 2008 Nov; 89(11):2080-5. PubMed ID: 18996235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy cost and cardiopulmonary responses for wheelchair locomotion and walking on tile and on carpet.
    Glaser RM; Sawka MN; Wilde SW; Woodrow BK; Suryaprasad AG
    Paraplegia; 1981; 19(4):220-6. PubMed ID: 7290731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach.
    Dubowsky SR; Sisto SA; Langrana NA
    J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses.
    Smith PA; Glaser RM; Petrofsky JS; Underwood PD; Smith GB; Richard JJ
    Arch Phys Med Rehabil; 1983 Jun; 64(6):249-54. PubMed ID: 6860094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paraplegic use of walking braces: a survey.
    Rosman N; Spira E
    Arch Phys Med Rehabil; 1974 Jul; 55(7):310-4. PubMed ID: 4842914
    [No Abstract]   [Full Text] [Related]  

  • 15. Biomechanics of wheelchair propulsion as a function of seat position and user-to-chair interface.
    Hughes CJ; Weimar WH; Sheth PN; Brubaker CE
    Arch Phys Med Rehabil; 1992 Mar; 73(3):263-9. PubMed ID: 1543431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact.
    Kwarciak AM; Sisto SA; Yarossi M; Price R; Komaroff E; Boninger ML
    Arch Phys Med Rehabil; 2009 Jan; 90(1):20-6. PubMed ID: 19154825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation into anaerobic performance of wheelchair athletes.
    Lees A; Arthur S
    Ergonomics; 1988 Nov; 31(11):1529-37. PubMed ID: 3229403
    [No Abstract]   [Full Text] [Related]  

  • 18. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Med Sci Sports Exerc; 1994 Nov; 26(11):1373-81. PubMed ID: 7837958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy expenditure of paraplegic patients standing and walking with two knee-ankle-foot orthoses.
    Merkel KD; Miller NE; Westbrook PR; Merritt JL
    Arch Phys Med Rehabil; 1984 Mar; 65(3):121-4. PubMed ID: 6703885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of paraplegic walking.
    Bowker P; Messenger N; Ogilvie C; Rowley DI
    J Biomed Eng; 1992 Jul; 14(4):344-50. PubMed ID: 1513140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.