These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 6623089)

  • 1. A micromechanical contribution to cochlear tuning and tonotopic organization.
    Holton T; Hudspeth AJ
    Science; 1983 Nov; 222(4623):508-10. PubMed ID: 6623089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical tuning of free-standing stereociliary bundles and frequency analysis in the alligator lizard cochlea.
    Frishkopf LS; DeRosier DJ
    Hear Res; 1983 Dec; 12(3):393-404. PubMed ID: 6668260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two modes of motion of the alligator lizard cochlea: measurements and model predictions.
    Aranyosi AJ; Freeman DM
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1585-92. PubMed ID: 16240819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for signal transmission in an ear having hair cells with free-standing stereocilia. III. Micromechanical stage.
    Weiss TF; Leong R
    Hear Res; 1985; 20(2):157-74. PubMed ID: 4086381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua.
    Manley GA; Yates GK; Köppl C
    Hear Res; 1988 May; 33(2):181-9. PubMed ID: 3397328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical resonance of isolated hair cells does not account for acoustic tuning in the free-standing region of the alligator lizard's cochlea.
    Eatock RA; Saeki M; Hutzler MJ
    J Neurosci; 1993 Apr; 13(4):1767-83. PubMed ID: 8385208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromechanics of the reptilian ear.
    Nielsen DW; Turner RG
    Audiology; 1983; 22(6):530-44. PubMed ID: 6667174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple model of cochlear micromechanics in the mammal and lizard.
    Turner RG; Nielsen DW
    Audiology; 1983; 22(6):545-59. PubMed ID: 6667175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of cochlear mechanics with outer hair cell motility.
    Neely ST
    J Acoust Soc Am; 1993 Jul; 94(1):137-46. PubMed ID: 8354757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative anatomical basis for a model of micromechanical frequency tuning in the Tokay gecko, Gekko gecko.
    Köppl C; Authier S
    Hear Res; 1995 Jan; 82(1):14-25. PubMed ID: 7744709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural tuning in the granite spiny lizard.
    Turner RG
    Hear Res; 1987; 26(3):287-99. PubMed ID: 3583929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency selectivity of hair cells and nerve fibres in the alligator lizard cochlea.
    Holton T; Weiss TF
    J Physiol; 1983 Dec; 345():241-60. PubMed ID: 6663500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the tuning of outer hair cells and the basilar membrane in the isolated cochlea.
    Khanna SM; Flock A; Ulfendahl M
    Acta Otolaryngol Suppl; 1989; 467():151-6. PubMed ID: 2626923
    [No Abstract]   [Full Text] [Related]  

  • 14. Basilar-membrane motion in the alligator lizard: its relation to tonotopic organization and frequency selectivity.
    Peake WT; Ling A
    J Acoust Soc Am; 1980 May; 67(5):1736-45. PubMed ID: 7372928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin of tuning in turtle cochlear hair cells.
    Fettiplace R; Crawford AC
    Hear Res; 1980 Jun; 2(3-4):447-54. PubMed ID: 7410249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inner hair cell responses to the velocity of basilar membrane motion in the guinea pig.
    Nuttall AL; Brown MC; Masta RI; Lawrence M
    Brain Res; 1981 Apr; 211(1):171-4. PubMed ID: 7225832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of the generation of the cochlear microphonic with nonlinear hair cell transduction and nonlinear basilar membrane mechanics.
    Patuzzi RB
    Hear Res; 1987; 30(1):73-82. PubMed ID: 3680056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endolymphatic and intracellular resting potential in the alligator lizard cochlea.
    Weiss TF; Altmann DW; Mulroy MJ
    Pflugers Arch; 1978 Jan; 373(1):77-84. PubMed ID: 565037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent developments in cochlear physiology.
    Lippe WR
    Ear Hear; 1986 Aug; 7(4):233-9. PubMed ID: 3743914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cellular basis of hearing: the biophysics of hair cells.
    Hudspeth AJ
    Science; 1985 Nov; 230(4727):745-52. PubMed ID: 2414845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.