These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 6623090)

  • 1. Alternating current delivered into the scala media alters sound pressure at the eardrum.
    Hubbard AE; Mountain DC
    Science; 1983 Nov; 222(4623):510-2. PubMed ID: 6623090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spectral content of the cochlear microphonic measured in scala media of the guinea pig cochlea.
    Hubbard AE; Mountain DC; Geisler CD
    J Acoust Soc Am; 1979 Aug; 66(2):415-30. PubMed ID: 512203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-dependent elements are involved in the generation of the cochlear microphonic and the sound-induced resistance changes measured in scala media of the guinea pig.
    Mountain DC; Hubbard AE; Geisler CD
    Hear Res; 1980 Oct; 3(3):215-29. PubMed ID: 7440425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of efferents alters the cochlear microphonic and the sound-induced resistance changes measured in scale media of the guinea pig.
    Mountain DC; Geisler CD; Hubbard AE
    Hear Res; 1980 Oct; 3(3):231-40. PubMed ID: 7440426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the spectra of the cochlear microphonic and of the sound-elicited electrical impedance changes measured in scala media of the guinea pig.
    Hubbard AE; Geisler CD; Mountain DC
    J Acoust Soc Am; 1979 Aug; 66(2):431-45. PubMed ID: 512204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Middle ear forward and reverse transmission in gerbil.
    Dong W; Olson ES
    J Neurophysiol; 2006 May; 95(5):2951-61. PubMed ID: 16481455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for changing the avian endocochlear potential by current injection.
    Vossieck T; Klinke R
    Eur Arch Otorhinolaryngol; 1990; 248(1):11-4. PubMed ID: 2083066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human middle-ear model with compound eardrum and airway branching in mastoid air cells.
    Keefe DH
    J Acoust Soc Am; 2015 May; 137(5):2698-725. PubMed ID: 25994701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracochlear Scala Media Pressure Measurement: Implications for Models of Cochlear Mechanics.
    Kale SS; Olson ES
    Biophys J; 2015 Dec; 109(12):2678-2688. PubMed ID: 26682824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear perfusion with a viscous fluid.
    Wang Y; Olson ES
    Hear Res; 2016 Jul; 337():1-11. PubMed ID: 27220484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Amplitude and phase of cochlear microphonics as a function of the changes of pressure inside the tympanic bulla in the gerbil and guinea pig].
    AUBRY M; PIALOUX P; BURGEAT M
    Ann Otolaryngol; 1962 Jun; 79():387-94. PubMed ID: 13863191
    [No Abstract]   [Full Text] [Related]  

  • 13. A temporal bone preparation for the study of cochlear micromechanics at the cellular level.
    Ulfendahl M; Flock A; Khanna SM
    Hear Res; 1989 Jun; 40(1-2):55-64. PubMed ID: 2768083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically evoked basilar membrane motion.
    Xue S; Mountain DC; Hubbard AE
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3030-41. PubMed ID: 7759643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse cochlear propagation in the intact cochlea of the gerbil: evidence for slow traveling waves.
    Meenderink SW; van der Heijden M
    J Neurophysiol; 2010 Mar; 103(3):1448-55. PubMed ID: 20089817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vulnerability and adaptation of distortion product otoacoustic emissions to endocochlear potential variation.
    Mills DM; Norton SJ; Rubel EW
    J Acoust Soc Am; 1993 Oct; 94(4):2108-22. PubMed ID: 8227751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The change in the electrical resistance of the scala media produced by vasopressin.
    Mori N; Ohya R; Shugyo A; Matsunaga T
    Acta Otolaryngol; 1987; 104(1-2):66-70. PubMed ID: 3661164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
    Greene NT; Mattingly JK; Jenkins HA; Tollin DJ; Easter JR; Cass SP
    Otol Neurotol; 2015 Sep; 36(9):1554-61. PubMed ID: 26333018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of BAPTA and 4AP in scala media on transduction and cochlear gain.
    Sellick PM; Robertson D; Patuzzi R
    Hear Res; 2006 Jan; 211(1-2):7-15. PubMed ID: 16343830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of intra-cochlear pressure waves.
    Olson ES
    Nature; 1999 Dec; 402(6761):526-9. PubMed ID: 10591211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.