These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 66232)

  • 1. Active amino acid transport in plasma membrane vesicles from Simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake.
    Lever JE
    J Biol Chem; 1977 Mar; 252(6):1990-7. PubMed ID: 66232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of active alpha-aminoisobutyric acid transport expressed in membrane vesicles from mouse fibroblasts.
    Lever JE
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2614-8. PubMed ID: 183203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Na+ in alpha-aminoisobutyric acid uptake by membrane vesicles from mouse fibroblasts transformed by simian virus 40.
    Nishino H; Schiller RM; Parnes JR; Isselbacher KJ
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2329-32. PubMed ID: 79182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine.
    Fass SJ; Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):583-90. PubMed ID: 833145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of amino acid and glucose transport activity expressed in isolated membranes from untransformed and SV 40-transformed mouse fibroblasts.
    Lever JE
    J Cell Physiol; 1976 Dec; 89(4):779-87. PubMed ID: 188848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid transport by membrane vesicles of virally transformed and nontransformed cells: effects of sodium gradient and cell density.
    Parnes JR; Garvey TQ; Isselbacher KJ
    J Cell Physiol; 1976 Dec; 89(4):789-94. PubMed ID: 188849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active alanine transport in isolated brush border membranes.
    Sigrist-Nelson K; Murer H; Hopfer U
    J Biol Chem; 1975 Jul; 250(14):5674-80. PubMed ID: 1141245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active phosphate ion transport in plasma membrane vesicles isolated from mouse fibroblasts.
    Lever JE
    J Biol Chem; 1978 Apr; 253(7):2081-4. PubMed ID: 204640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane potential and neutral amino acid transport in plasma membrane vesicles from Simian virus 40 transformed mouse fibroblasts.
    Lever JE
    Biochemistry; 1977 Sep; 16(19):4328-34. PubMed ID: 197993
    [No Abstract]   [Full Text] [Related]  

  • 10. Transport of amino acids in renal brush border membrane vesicles. Uptake of L-proline.
    Hammerman MR; Sacktor B
    J Biol Chem; 1977 Jan; 252(2):591-5. PubMed ID: 833146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium-stimulated alpha-aminoisobutyric acid transport by membrane vesicles from simian virus-transformed mouse cells.
    Hamilton RT; Nilsen-Hamilton M
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1907-11. PubMed ID: 180527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutral amino acid transport in surface membrane vesicles isolated from mouse fibroblasts: intrinsic and extrinsic models of regulation.
    Lever JE
    J Supramol Struct; 1977; 6(1):103-24. PubMed ID: 197316
    [No Abstract]   [Full Text] [Related]  

  • 13. Amino acid transport in kidney epithelial cell line (MDCK): characteristics of Na+/amino acid symport in membrane vesicles and basolateral localization in cell monolayers.
    Lever JE; Kennedy BG; Vasan R
    Arch Biochem Biophys; 1984 Nov; 234(2):330-40. PubMed ID: 6093696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate.
    Reid M; Gibb LE; Eddy AA
    Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.
    Laris PC; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1976 Jun; 436(2):475-88. PubMed ID: 1276225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid transport in plasma-membrane vesicles from rat liver. Characterization of L-alanine transport.
    Sips HJ; Van Amelsvoort JM; Van Dam K
    Eur J Biochem; 1980 Apr; 105(2):217-24. PubMed ID: 7379782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-gradient-stimulated transport of L-alanine by plasma-membrane vesicles isolated from liver parenchymal cells of fed and starved rats. Crucial role of the adrenal glucocorticoids.
    Quinlan DC; Todderud CG; Kelley DS; Kletzien RF
    Biochem J; 1982 Dec; 208(3):685-93. PubMed ID: 7165726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid transport in membrane vesicles from CHO-K1 and alanine-resistant transport mutants.
    Moffett J; Jones M; Englesberg E
    Biochemistry; 1987 May; 26(9):2487-94. PubMed ID: 3607029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-dependent transport of glycine in renal brush border membrane vesicles. Evidence for a single specific transport system.
    Hammerman MR; Sacktor B
    Biochim Biophys Acta; 1982 Apr; 686(2):189-96. PubMed ID: 7082661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatic taurine transport: a Na+-dependent carrier on the basolateral plasma membrane.
    Bucuvalas JC; Goodrich AL; Suchy FJ
    Am J Physiol; 1987 Sep; 253(3 Pt 1):G351-8. PubMed ID: 3631271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.