BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6624174)

  • 1. [Static load on human cadaver femora with implanted hip endoprosthesis shafts in various forms].
    Dienel RB; Manitz L; Jungnickel I; Holzweissig F
    Z Exp Chir Transplant Kunstliche Organe; 1983; 16(4):219-26. PubMed ID: 6624174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Friction of ceramic and metal hip hemi-endoprostheses against cadaveric acetabula.
    Müller LP; Degreif J; Rudig L; Mehler D; Hely H; Rommens PM
    Arch Orthop Trauma Surg; 2004 Dec; 124(10):681-7. PubMed ID: 15449077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical evaluation of screw-in femoral implant in cementless total hip system.
    Kim JY; Hayashi K; Garcia TC; Kim SY; Entwistle R; Kapatkin AS; Stover SM
    Vet Surg; 2012 Jan; 41(1):94-102. PubMed ID: 22092256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical evaluation of adjunctive fixation for prevention of periprosthetic femur fracture with the Zurich cementless total hip prosthesis.
    Pozzi A; Peck JN; Chao P; Choate CJ; Barousse D; Conrad B
    Vet Surg; 2013 Jun; 42(5):529-34. PubMed ID: 23731463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Anatomically adapted endoprosthesis of the proximal end of the femur].
    Henssge EJ; Grundei H; Etspüler R; Köller W; Fink K
    Z Orthop Ihre Grenzgeb; 1985; 123(5):821-8. PubMed ID: 4082741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Experimental results of stepped titanium shafts for hip endoprostheses].
    Stock D; Gottstein J; Griss P; Winter M; Heimke G; Büsing CM
    Z Orthop Ihre Grenzgeb; 1983; 121(5):640-5. PubMed ID: 6649813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro study of the strain distribution in human femora with anatomical and customised femoral stems.
    Østbyhaug PO; Klaksvik J; Romundstad P; Aamodt A
    J Bone Joint Surg Br; 2009 May; 91(5):676-82. PubMed ID: 19407307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical comparison of newly designed stemless prosthesis and conventional hip prosthesis--an experimental study.
    Tai CL; Lee MS; Chen WP; Hsieh PH; Lee PC; Shih CH
    Biomed Mater Eng; 2005; 15(3):239-49. PubMed ID: 15912004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experience with bioceramic implants in orthopaedic surgery.
    Knahr K; Salzer M; Plenk H; Grundschober F; Ramach W
    Biomaterials; 1981 Apr; 2(2):98-104. PubMed ID: 7248428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of femoral stem geometry on interface motion in uncemented porous-coated total hip prostheses. Comparison of straight-stem and curved-stem designs.
    Callaghan JJ; Fulghum CS; Glisson RR; Stranne SK
    J Bone Joint Surg Am; 1992 Jul; 74(6):839-48. PubMed ID: 1634574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel locking screw hip stem to achieve immediate stability in total hip arthroplasty: A biomechanical study.
    Grechenig S; Gueorguiev B; Berner A; Heiss P; Müller M; Nerlich M; Schmitz P
    Injury; 2015 Oct; 46 Suppl 4():S83-7. PubMed ID: 26542871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of hip stem material modulus on surface strain in human femora.
    Vail TP; Glisson RR; Koukoubis TD; Guilak F
    J Biomech; 1998 Jul; 31(7):619-28. PubMed ID: 9796684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biomechanical analysis of the loosening of the femur prostheses (author's transl)].
    Huggler AH; Jacob HA; Schreiber A
    Arch Orthop Trauma Surg (1978); 1978 Oct; 92(4):261-72. PubMed ID: 727921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The centrometaphyseal femoral hip prosthesis: 8-year follow-up.
    Vermeire D
    Acta Orthop Belg; 1993; 59 Suppl 1():294-6. PubMed ID: 8116413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical evaluation of the helica femoral implant system using traditional and modified techniques.
    Dosch M; Hayashi K; Garcia TC; Weeren R; Stover SM
    Vet Surg; 2013 Oct; 42(7):867-76. PubMed ID: 23980642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcar unloading after hip replacement. A cadaver study of femoral stem designs.
    Djerf K; Gillquist J
    Acta Orthop Scand; 1987 Apr; 58(2):97-103. PubMed ID: 3604635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of calcar contact on femoral component micromovement. A mechanical study.
    Markolf KL; Amstutz HC; Hirschowitz DL
    J Bone Joint Surg Am; 1980 Dec; 62(8):1315-23. PubMed ID: 7440610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical compatibility of noncemented hip prostheses with the human femur.
    Dujovne AR; Bobyn JD; Krygier JJ; Miller JE; Brooks CE
    J Arthroplasty; 1993 Feb; 8(1):7-22. PubMed ID: 8436993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone remodeling and in vivo strain analysis of intact and implanted greyhound proximal femora.
    Szivek JA; Johnson EM; Magee FP; Emmanual J; Poser R; Koeneman JB
    J Invest Surg; 1994; 7(3):213-33. PubMed ID: 7918244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How does the relative wall thickness of human femora follow the biomechanical optima? An experimental study on mummies.
    Evinger S; Suhai B; Bernáth B; Gerics B; Pap I; Horváth G
    J Exp Biol; 2005 Mar; 208(Pt 5):899-905. PubMed ID: 15755888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.