These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6625611)

  • 1. Changes in the electron transport chain of pea leaf mitochondria metabolizing malate.
    Walker GH; Oliver DJ
    Arch Biochem Biophys; 1983 Sep; 225(2):847-53. PubMed ID: 6625611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+.
    Palmer JM; Schwitzguébel JP; Møller IM
    Biochem J; 1982 Dec; 208(3):703-11. PubMed ID: 6819864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P; Lance C
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of bicarbonate and oxaloacetate on malate oxidation by spinach leaf mitochondria.
    Neuburger M; Douce R
    Biochim Biophys Acta; 1980 Feb; 589(2):176-89. PubMed ID: 7356982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The photorespiratory hydrogen shuttle. Synthesis of phthalonic acid and its use in the characterization of the malate/aspartate shuttle in pea (Pisum sativum) leaf mitochondria.
    Dry IB; Dimitriadis E; Ward AD; Wiskich JT
    Biochem J; 1987 Aug; 245(3):669-75. PubMed ID: 3663185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative phosphorylation and rotenone-insensitive malate- and NADH-quinone oxidoreductases in Plasmodium yoelii yoelii mitochondria in situ.
    Uyemura SA; Luo S; Vieira M; Moreno SN; Docampo R
    J Biol Chem; 2004 Jan; 279(1):385-93. PubMed ID: 14561763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malic enzyme activity and cyanide-insensitive electron transport in plant mitochondria.
    Rustin P; Moreau F
    Biochem Biophys Res Commun; 1979 Jun; 88(3):1125-31. PubMed ID: 223569
    [No Abstract]   [Full Text] [Related]  

  • 9. Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves.
    Geisler DA; Johansson FI; Svensson AS; Rasmusson AG
    BMC Plant Biol; 2004 May; 4():8. PubMed ID: 15140267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne.
    Hong HT; Nose A; Agarie S
    J Exp Bot; 2004 Oct; 55(406):2201-11. PubMed ID: 15361538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxidation of malate by isolated plant mitochondria.
    Coleman JO; Palmer JM
    Eur J Biochem; 1972 Apr; 26(4):499-509. PubMed ID: 4337262
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of respiratory inhibitors on NADH, succinate and malate oxidation in corn mitochondria.
    Wilson RH; Hanson JB
    Plant Physiol; 1969 Sep; 44(9):1335-41. PubMed ID: 5379109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyruvate metabolism in castor-bean mitochondria.
    Brailsford MA; Thompson AG; Kaderbhai N; Beechey RB
    Biochem J; 1986 Oct; 239(2):355-61. PubMed ID: 3814077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial respiration in ME-CAM, PEPCK-CAM, and C₃ succulents: comparative operation of the cytochrome, alternative, and rotenone-resistant pathways.
    Peckmann K; von Willert DJ; Martin CE; Herppich WB
    J Exp Bot; 2012 May; 63(8):2909-19. PubMed ID: 22330897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial metabolism of pyruvate in bovine spermatozoa.
    Hutson SM; Van Dop C; Lardy HA
    J Biol Chem; 1977 Feb; 252(4):1309-15. PubMed ID: 838719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosynthesis in phosphoenolpyruvate carboxykinase-type C4 plants: activity and role of mitochondria in bundle sheath cells.
    Hatch MD; Agostino A; Burnell JN
    Arch Biochem Biophys; 1988 Mar; 261(2):357-67. PubMed ID: 3355156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of methyl methacrylate on mitochondrial function and structure.
    Bereznowski Z
    Int J Biochem; 1994 Sep; 26(9):1119-27. PubMed ID: 7988736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malate Oxidation in Plant Mitochondria via Malic Enzyme and the Cyanide-insensitive Electron Transport Pathway.
    Rustin P; Moreau F; Lance C
    Plant Physiol; 1980 Sep; 66(3):457-62. PubMed ID: 16661455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of cyanide-resistant and rotenone-insensitive pathways of mitochondrial electron transport during oxidation of glycine in higher plants.
    Igamberdiev AU; Bykova NV; Gardeström P
    FEBS Lett; 1997 Jul; 412(2):265-9. PubMed ID: 9256232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.