These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6625887)

  • 1. Effect of rifamycin derivatives and coumermycin A1 on in vitro RNA synthesis by African swine fever virus. Brief report.
    Salas ML; Kuznar J; Viñuela E
    Arch Virol; 1983; 77(1):77-80. PubMed ID: 6625887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of African swine fever (ASF virus replication by phosphonoacetic acid.
    Moreno MA; Carrascosa AL; Ortín J; Viñuela E
    J Gen Virol; 1978 May; 39(2):253-8. PubMed ID: 650176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of inhibitors of the host cell RNA polymerase II on African swine fever virus multiplication.
    Salas J; Salas ML; Viñuela E
    Virology; 1988 May; 164(1):280-3. PubMed ID: 3363868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.
    Freitas FB; Frouco G; Martins C; Leitão A; Ferreira F
    Antiviral Res; 2016 Oct; 134():34-41. PubMed ID: 27568922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novobiocin inhibits RNA polymerase III transcription in vitro by a mechanism distinct from DNA topoisomerase II.
    Gottesfeld JM
    Nucleic Acids Res; 1986 Mar; 14(5):2075-88. PubMed ID: 3008085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative in-vitro activities of teicoplanin, vancomycin, coumermycin and ciprofloxacin, alone and in combination with rifampicin or LM 427, against Staphylococcus aureus.
    Van der Auwera P; Joly P
    J Antimicrob Chemother; 1987 Mar; 19(3):313-20. PubMed ID: 3032884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of disodium phosphonoacetate and iododeoxyuridine on the multiplication of African swine fever virus in vitro.
    Gil-Fernández C; Páez E; Vilas P; Gancedo AG
    Chemotherapy; 1979; 25(3):162-9. PubMed ID: 378573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA supercoiling and transcription in Escherichia coli: influence of RNA polymerase mutations.
    Mirkin SM; Bogdanova ES; Gorlenko ZM; Gragerov AI; Larionov OA
    Mol Gen Genet; 1979; 177(1):169-75. PubMed ID: 231726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coumerimycin A1: A preferential inhibitor of replicative DNA synthesis in Escherichia coli. II. In vivo characterization.
    Ryan MJ; Wells RD
    Biochemistry; 1976 Aug; 15(17):3778-82. PubMed ID: 782523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New agents active against African swine fever virus.
    Sola A; Rodríguez S; Gil-Fernández C; Alarcón B; González ME; Carrasco L
    Antimicrob Agents Chemother; 1986 Feb; 29(2):284-8. PubMed ID: 3717934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro activity of coumermycin alone or in combination against Staphylococcus aureus and Staphylococcus epidermidis.
    Van der Auwera P; Klastersky J
    Drugs Exp Clin Res; 1986; 12(4):307-11. PubMed ID: 3013562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of rifamycins with mammalian nucleic acid polymerizing enzymes.
    Sethi VS; Okano P
    Biochim Biophys Acta; 1976 Dec; 454(2):230-47. PubMed ID: 63293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of coumermycin A1 and nalidixic acid on lambda phage integration and transducing lambdoid phages containing RNA-polymerase genes].
    Kholodií GIa; Mindlin SZ
    Genetika; 1980; 16(11):1921-32. PubMed ID: 6450709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-dependent RNA polymerase in African swine fever virus.
    Kuznar J; Salas ML; Viñuela E
    Virology; 1980 Feb; 101(1):169-75. PubMed ID: 7355576
    [No Abstract]   [Full Text] [Related]  

  • 15. Phosphorylation of African swine fever virus proteins in vitro and in vivo.
    Salas ML; Salas J; Viñuela E
    Biochimie; 1988 May; 70(5):627-35. PubMed ID: 3139081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of T7 specific RNA polymerase. 3. Inhibition by derivatives of rifamycin SV.
    Chamberlin MJ; Ring J
    Biochem Biophys Res Commun; 1972 Nov; 49(4):1129-36. PubMed ID: 4641709
    [No Abstract]   [Full Text] [Related]  

  • 17. Estimation of the effect of coumermycin A1 on Salmonella typhimurium promoters by using random operon fusions.
    Jovanovich SB; Lebowitz J
    J Bacteriol; 1987 Oct; 169(10):4431-5. PubMed ID: 2820924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparative study of the effect of different rifamycins on bacterial cell metabolism and on the RNA-polymerase reaction in a cell-free system].
    Subbotina NA
    Antibiotiki; 1978 Mar; 23(3):239-42. PubMed ID: 345958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro inhibition of Saccharomyces cerevisiae RNA polymerase by rifamycin derivatives (rifamycins and yeast RNA polymerase).
    Di Mauro E; Mezzina M; Arcà M
    Arch Biochem Biophys; 1974 Oct; 164(2):765-8. PubMed ID: 4618080
    [No Abstract]   [Full Text] [Related]  

  • 20. [Effect of DNA supercoiling on transcription performed by normal and mutant Escherichia coli RNA-polymerases].
    Mirkin SM; Bogdanova ES; Gorlenko AhM ; Gragerov AI; Larionov OA
    Mol Biol (Mosk); 1979; 13(6):1341-9. PubMed ID: 232746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.