BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 6626532)

  • 1. Vesiculation of unsonicated phospholipid dispersions containing phosphatidic acid by pH adjustment: physicochemical properties of the resulting unilamellar vesicles.
    Hauser H; Gains N; Müller M
    Biochemistry; 1983 Sep; 22(20):4775-81. PubMed ID: 6626532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous vesiculation of phospholipids: a simple and quick method of forming unilamellar vesicles.
    Hauser H; Gains N
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):1683-7. PubMed ID: 6952221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase behaviour of mixtures of lipid X with phosphatidylcholine and phosphatidylethanolamine.
    Lipka G; Hauser H
    Biochim Biophys Acta; 1989 Feb; 979(2):239-50. PubMed ID: 2923879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous vesiculation of uncharged phospholipid dispersions consisting of lecithin and lysolecithin.
    Hauser H
    Chem Phys Lipids; 1987 May; 43(4):283-99. PubMed ID: 3607970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study.
    Hope MJ; Walker DC; Cullis PR
    Biochem Biophys Res Commun; 1983 Jan; 110(1):15-22. PubMed ID: 6838506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous vesiculation of large multilamellar vesicles composed of saturated phosphatidylcholine and phosphatidylglycerol mixtures.
    Madden TD; Tilcock CP; Wong K; Cullis PR
    Biochemistry; 1988 Nov; 27(24):8724-30. PubMed ID: 3242602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of spontaneous vesiculation.
    Hauser H
    Proc Natl Acad Sci U S A; 1989 Jul; 86(14):5351-5. PubMed ID: 2748590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of monodisperse unilamellar phospholipid vesicles with selected diameters of from 300 to 600 nm.
    Aurora TS; Li W; Cummins HZ; Haines TH
    Biochim Biophys Acta; 1985 Nov; 820(2):250-8. PubMed ID: 4052421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physicochemical characterization of large unilamellar phospholipid vesicles prepared by reverse-phase evaporation.
    Düzgüneş N; Wilschut J; Hong K; Fraley R; Perry C; Friend DS; James TL; Papahadjopoulos D
    Biochim Biophys Acta; 1983 Jul; 732(1):289-99. PubMed ID: 6688185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous formation of small unilamellar vesicles by pH jump: a pH gradient across the bilayer membrane as the driving force.
    Hauser H; Mantsch HH; Casal HL
    Biochemistry; 1990 Mar; 29(9):2321-9. PubMed ID: 2337604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of polymyxin B nonapeptide with anionic phospholipids.
    Kubesch P; Boggs J; Luciano L; Maass G; Tümmler B
    Biochemistry; 1987 Apr; 26(8):2139-49. PubMed ID: 3040082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous vesiculation of aqueous lipid dispersions.
    Hauser H; Gains N; Eibl HJ; Müller M; Wehrli E
    Biochemistry; 1986 Apr; 25(8):2126-34. PubMed ID: 3707937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance.
    Traïkia M; Warschawski DE; Recouvreur M; Cartaud J; Devaux PF
    Eur Biophys J; 2000; 29(3):184-95. PubMed ID: 10968210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divalent cations and chlorpromazine can induce non-bilayer structures in phosphatidic acid-containing model membranes.
    Verkleij AJ; De Maagd R; Leunissen-Bijvelt J; De Kruijff B
    Biochim Biophys Acta; 1982 Jan; 684(2):255-62. PubMed ID: 7055567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniform preparations of large unilamellar vesicles containing anionic lipids.
    Li W; Haines TH
    Biochemistry; 1986 Nov; 25(23):7477-83. PubMed ID: 3542028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-induced aggregation of phosphatidic acid and mixed phospholipid vesicles.
    Yoshimura T; Aki K
    Biochim Biophys Acta; 1985 Mar; 813(2):167-73. PubMed ID: 3970921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusion of phosphatidic acid-phosphatidylcholine mixed lipid vesicles.
    Liao MJ; Prestegard JH
    Biochim Biophys Acta; 1979 Jan; 550(2):157-73. PubMed ID: 758942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of positive and negative pH-gradients on the stability of small unilamellar vesicles of negatively charged phospholipids.
    Lin BZ; Yin CC; Hauser H
    Biochim Biophys Acta; 1993 Apr; 1147(2):237-44. PubMed ID: 8476917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divalent cation induced fusion and lipid lateral segregation in phosphatidylcholine-phosphatidic acid vesicles.
    Leventis R; Gagné J; Fuller N; Rand RP; Silvius JR
    Biochemistry; 1986 Nov; 25(22):6978-87. PubMed ID: 3801406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase behaviour of a diglyceride prodrug: spontaneous formation of unilamellar vesicles.
    Mantelli S; Speiser P; Hauser H
    Chem Phys Lipids; 1985 Aug; 37(4):329-43. PubMed ID: 2996795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.