These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 6626535)

  • 1. Dimensions in solution of pyridoxylated apohemoglobin.
    Kowalczyck J; Bucci E
    Biochemistry; 1983 Sep; 22(20):4805-9. PubMed ID: 6626535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specialized functional domains in hemoglobin: dimensions in solution of the apohemoglobin dimer labeled with fluorescein iodoacetamide.
    Sassaroli M; Bucci E; Liesegang J; Fronticelli C; Steiner RF
    Biochemistry; 1984 May; 23(11):2487-91. PubMed ID: 6548152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence energy transfer between ligand binding sites on aspartate transcarbamylase.
    Matsumoto S; Hammes GG
    Biochemistry; 1975 Jan; 14(2):214-24. PubMed ID: 1091284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degree of dissociation of apohemoglobin studied by nano-second fluorescence-polarization technique.
    Kinosita K; Mitaku S; Ikegami A
    Biochim Biophys Acta; 1975 May; 393(1):10-4. PubMed ID: 1138915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous motions within human apohemoglobin.
    Haouz A; El Mohsni S; Zentz C; Merola F; Alpert B
    Eur J Biochem; 1999 Aug; 264(1):250-7. PubMed ID: 10447695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the effect of subunit assembly on the structural flexibility of human alpha apohemoglobin by steady-state fluorescence.
    O'Malley SM; McDonald MJ
    J Protein Chem; 1994 Aug; 13(6):561-7. PubMed ID: 7832985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of human apohemoglobin with inositol hexaphosphate.
    Chu AH; Bucci E
    J Biol Chem; 1979 Jan; 254(2):371-6. PubMed ID: 762065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence studies of human semi-beta-hemoglobin assembly.
    Chiu F; Vasudevan G; Morris A; McDonald MJ
    Biochem Biophys Res Commun; 1998 Jan; 242(2):365-8. PubMed ID: 9446800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probe dependence of correlation times in heme-free extrinsically labeled human hemoglobin.
    Sassaroli M; Kowalczyk J; Bucci E
    Arch Biochem Biophys; 1986 Dec; 251(2):624-8. PubMed ID: 3800389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gelling properties of apohemoglobin S alone and in mixtures with hemoglobin S.
    Campbell B; Fronticelli C; Zachary A; Bucci E
    J Biol Chem; 1986 Mar; 261(9):3931-3. PubMed ID: 3949796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectron quantum yields of hemin, hemoglobin, and apohemoglobin. Possible applications to photoelectron microscopy of heme proteins in biological membranes.
    Dam RJ; Kongslie KF; Griffith OH
    Biophys J; 1974 Dec; 14(12):933-9. PubMed ID: 4429771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of human apohemoglobin dimer dissociation.
    Moulton DP; McDonald MJ
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1278-83. PubMed ID: 8147871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of glutamate apodecarboxylase by succinic semialdehyde and pyridoxamine 5'-phosphate.
    Porter TG; Martin SB; Martin DL
    J Neurochem; 1986 Aug; 47(2):468-71. PubMed ID: 2874189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of heme binding to semi-alpha-hemoglobin.
    Park RY; McDonald MJ
    Biochem Biophys Res Commun; 1989 Jul; 162(1):522-7. PubMed ID: 2751669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme transfer between phospholipid membranes and uptake by apohemoglobin.
    Rose MY; Thompson RA; Light WR; Olson JS
    J Biol Chem; 1985 Jun; 260(11):6632-40. PubMed ID: 3997843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced conformational states in human apohemoglobin on binding of haptoglobin 1--1. Effect of added heme as a probe of frozen structures.
    Waks M; Beychok S
    Biochemistry; 1974 Jan; 13(1):15-22. PubMed ID: 4808699
    [No Abstract]   [Full Text] [Related]  

  • 17. Novel manufacturing method for producing apohemoglobin and its biophysical properties.
    Pires IS; Belcher DA; Hickey R; Miller C; Badu-Tawiah AK; Baek JH; Buehler PW; Palmer AF
    Biotechnol Bioeng; 2020 Jan; 117(1):125-145. PubMed ID: 31612988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral studies of magnesium porphyrin--apomyoglobin and apohemoglobin complexes.
    Ong CC; Rodley GA
    J Inorg Biochem; 1983 Nov; 19(3):189-202. PubMed ID: 6644293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance energy transfer between the active sites of rabbit muscle creatine kinase: analysis by steady-state and time-resolved fluorescence.
    Grossman SH
    Biochemistry; 1989 May; 28(11):4894-902. PubMed ID: 2765518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics of hemoglobin subunits as seen by fluorescence spectroscopy.
    Oton J; Bucci E; Steiner RF; Fronticelli C; Franchi D; Montemarano J; Martinez A
    J Biol Chem; 1981 Jul; 256(14):7248-56. PubMed ID: 7251596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.