These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 662697)

  • 21. High-throughput single-molecule quantification of individual base stacking energies in nucleic acids.
    Abraham Punnoose J; Thomas KJ; Chandrasekaran AR; Vilcapoma J; Hayden A; Kilpatrick K; Vangaveti S; Chen A; Banco T; Halvorsen K
    Nat Commun; 2023 Feb; 14(1):631. PubMed ID: 36746949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular orbital calculations on the conformation of nucleic acids and their constituents. 3. Backbone structure of di- and polynucleotides.
    Pullman B; Perahia D; Saran A
    Biochim Biophys Acta; 1972 Apr; 269(1):1-14. PubMed ID: 5026319
    [No Abstract]   [Full Text] [Related]  

  • 23. Charge calculations in molecular mechanics 6: the calculation of partial atomic charges in nucleic acid bases and the electrostatic contribution to DNA base pairing.
    Abraham RJ; Smith PE
    Nucleic Acids Res; 1988 Mar; 16(6):2639-57. PubMed ID: 3362677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular doping of nucleic acids into light emitting crystals driven by multisite-intermolecular interaction.
    Jung WH; Park JH; Kim S; Cui C; Ahn DJ
    Nat Commun; 2022 Oct; 13(1):6193. PubMed ID: 36261659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of interactions between nucleic acid bases by refined atom-atom potential functions.
    Poltev VI; Shulyupina NV
    J Biomol Struct Dyn; 1986 Feb; 3(4):739-65. PubMed ID: 3271047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Method for conformational calculations of large fragments of nucleic acids. III. Long range interactions].
    Vorob'ev IuN
    Mol Biol (Mosk); 1983; 17(2):257-70. PubMed ID: 6855755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Affinity chromatography of nucleosides and nucleic acid base derivatives with nucleic acid bases or nitrobenzeneboronic acid substituted silicas.
    Akashi M; Tokiyoshi T; Miyauchi N; Mosbach K
    Nucleic Acids Symp Ser; 1985; (16):41-4. PubMed ID: 3003709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A TDDFT study of the excited states of DNA bases and their assemblies.
    Varsano D; Di Felice R; Marques MA; Rubio A
    J Phys Chem B; 2006 Apr; 110(14):7129-38. PubMed ID: 16599476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactions of nucleic acids and nucleoproteins with formaldehyde.
    Feldman MY
    Prog Nucleic Acid Res Mol Biol; 1973; 13():1-49. PubMed ID: 4573489
    [No Abstract]   [Full Text] [Related]  

  • 30. Hydration of nucleic acid bases studied using novel atom-atom potential functions.
    Poltev VI; Grokhlina TI; Malenkov GG
    J Biomol Struct Dyn; 1984 Oct; 2(2):413-29. PubMed ID: 6400943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Theoretical study of the hypochromic effect in polynucleotides].
    Volkov SN; Danilov VI
    Mol Biol (Mosk); 1975; 9(4):622-9. PubMed ID: 1214803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation of crystallographically determined and computationally predicted hydrogen-bonded pairing configurations of nucleic acid bases.
    Ornstein RL; Fresco JR
    Proc Natl Acad Sci U S A; 1983 Sep; 80(17):5171-5. PubMed ID: 6577415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarographic techniques in nucleic acid research.
    Palecek E
    Prog Nucleic Acid Res Mol Biol; 1969; 9():31-73. PubMed ID: 4888950
    [No Abstract]   [Full Text] [Related]  

  • 34. Hybrid simulation approach incorporating microscopic interaction along with rigid body degrees of freedom for stacking between base pairs.
    Mondal M; Halder S; Chakrabarti J; Bhattacharyya D
    Biopolymers; 2016 Apr; 105(4):212-26. PubMed ID: 26600167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands.
    Sedova A; Banavali NK
    Biochemistry; 2017 Mar; 56(10):1426-1443. PubMed ID: 28187685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases.
    Sponer J; Leszczynski J; Hobza P
    Biopolymers; 2001-2002; 61(1):3-31. PubMed ID: 11891626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The crystal structures of metal complexes of nucleic acids and their constituents.
    Swaminathan V; Sundaralingam M
    CRC Crit Rev Biochem; 1979; 6(3):245-336. PubMed ID: 378535
    [No Abstract]   [Full Text] [Related]  

  • 38. The spatial configuration of ordered polynucleotide chains. I. Helix formation and base stacking.
    Olson WK
    Biopolymers; 1976 May; 15(5):859-78. PubMed ID: 1260107
    [No Abstract]   [Full Text] [Related]  

  • 39. Structural and energetic consequences of noncomplementary base oppositions in nucleic acid helices.
    Lomant AJ; Fresco JR
    Prog Nucleic Acid Res Mol Biol; 1975; 15(0):185-218. PubMed ID: 1094495
    [No Abstract]   [Full Text] [Related]  

  • 40. Base stacking and molecular polarizability: effect of a methyl group in the 5-position of pyrimidines.
    Sowers LC; Shaw BR; Sedwick WD
    Biochem Biophys Res Commun; 1987 Oct; 148(2):790-4. PubMed ID: 3689373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.