These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 662697)

  • 41. Analysis of conformational parameters in nucleic acid fragments. II. Co-crystal complexes of nucleic acid bases.
    Wilson CC
    Nucleic Acids Res; 1988 Jan; 16(2):385-93. PubMed ID: 3340545
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theoretical studies on the intermolecular interactions of potentially primordial base-pair analogues.
    Sponer JE; Vázquez-Mayagoitia A; Sumpter BG; Leszczynski J; Sponer J; Otyepka M; Banás P; Fuentes-Cabrera M
    Chemistry; 2010 Mar; 16(10):3057-65. PubMed ID: 20119984
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Finding and visualizing nucleic acid base stacking.
    Gabb HA; Sanghani SR; Robert CH; Prévost C
    J Mol Graph; 1996 Feb; 14(1):6-11, 23-4. PubMed ID: 8744567
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A free energy analysis of nucleic acid base stacking in aqueous solution.
    Friedman RA; Honig B
    Biophys J; 1995 Oct; 69(4):1528-35. PubMed ID: 8534823
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reactions between singlet oxygen and the constituents of nucleic acids. Importance of reactions in photodynamic processes.
    Hallett FR; Hallett BP; Snipes W
    Biophys J; 1970 Apr; 10(4):305-15. PubMed ID: 5436880
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stacking of purines in water: the role of dipolar interactions in caffeine.
    Tavagnacco L; Di Fonzo S; D'Amico F; Masciovecchio C; Brady JW; Cesàro A
    Phys Chem Chem Phys; 2016 May; 18(19):13478-86. PubMed ID: 27127808
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DNA base-stacking interactions: a comparison of theoretical calculations with oligonucleotide X-ray crystal structures.
    Hunter CA; Lu XJ
    J Mol Biol; 1997 Feb; 265(5):603-19. PubMed ID: 9048952
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies.
    Sponer J; Leszczynski J; Hobza P
    J Biomol Struct Dyn; 1996 Aug; 14(1):117-35. PubMed ID: 8877568
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Effect of intramolecular interaction on the electron excitation state of nucleic acid components].
    Rubin IuV; Egupov SA
    Biofizika; 1987; 32(3):378-82. PubMed ID: 3620518
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of nitrous bases interactions on the DNA secondary structure formation.
    Polozov RV; Poltev VI; Sukhorukov BI
    J Theor Biol; 1975 Dec; 55(2):491-503. PubMed ID: 1207173
    [No Abstract]   [Full Text] [Related]  

  • 51. Coplanar and coaxial orientations of RNA bases and helices.
    Laederach A; Chan JM; Schwartzman A; Willgohs E; Altman RB
    RNA; 2007 May; 13(5):643-50. PubMed ID: 17339576
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Block-units method for conformational calculations of large nucleic acid chains. I. Block-units approximation of atomic structure and conformational energy of polynucleotides.
    Vorobjev YuN
    Biopolymers; 1990; 29(12-13):1503-18. PubMed ID: 2117471
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The crystal structures of purines, pyrimidines and their intermolecular complexes.
    Voet D; Rich A
    Prog Nucleic Acid Res Mol Biol; 1970; 10():183-265. PubMed ID: 4910304
    [No Abstract]   [Full Text] [Related]  

  • 54. Molecular orbital calculations on the conformation of nucleic acids and their constituents. II. Conformational energies of nucleosides with C(3')-and C(2')-exo sugars.
    Berthod H; Pullman B
    Biochim Biophys Acta; 1971 Sep; 246(3):359-64. PubMed ID: 5316821
    [No Abstract]   [Full Text] [Related]  

  • 55. Base pair buckling can eliminate the interstrand purine clash at the CpG steps in B-DNA caused by the base pair propeller twisting.
    Sponer J; Kypr J
    J Biomol Struct Dyn; 1990 Jun; 7(6):1211-20. PubMed ID: 2363846
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intramolecular interaction of thymine and adenine bases in synthetic oligo- and polynucleotide models.
    Sakuma Y; Inaki Y; Takemoto K
    Nucleic Acids Symp Ser; 1982; (11):269-72. PubMed ID: 7183965
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrogen bonding of amino acid side chains to nucleic acid bases.
    Lancelot G
    Biochimie; 1977; 59(7):587-96. PubMed ID: 922051
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Free energy calculations by computer simulation.
    Bash PA; Singh UC; Langridge R; Kollman PA
    Science; 1987 May; 236(4801):564-8. PubMed ID: 3576184
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The conformation of single stranded oligonucleotides and of oligonucleotide-oligopeptide complexes from their rotation relaxation in the nanosecond time range.
    Porschke D; Jung M
    J Biomol Struct Dyn; 1985 Jun; 2(6):1173-84. PubMed ID: 3916947
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Platinum interactions with nucleic acids: insights from model compounds.
    de Castro B; Kistenmacher TJ; Marzilli LG
    Agents Actions Suppl; 1981; 8():435-64. PubMed ID: 6162371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.