BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 6628198)

  • 1. [Action of palmitate on the energy coupling in skeletal muscle and liver mitochondria].
    Altukhov ND; Kirillova GP; Mokhova EN; Skulachev VP
    Dokl Akad Nauk SSSR; 1983; 271(5):1254-6. PubMed ID: 6628198
    [No Abstract]   [Full Text] [Related]  

  • 2. [Effect of palmitate on energy coupling in lymphocyte mitochondria].
    Bakeeva LE; Kirillova GP; Kolesnikova OV; Konoshenko GI; Mokhova EN
    Biokhimiia; 1985 May; 50(5):774-81. PubMed ID: 4005321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold exposure differently influences mitochondrial energy efficiency in rat liver and skeletal muscle.
    Mollica MP; Lionetti L; Crescenzo R; Tasso R; Barletta A; Liverini G; Iossa S
    FEBS Lett; 2005 Mar; 579(9):1978-82. PubMed ID: 15792806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dependence if uncoupling activity of palmitate in liver mitochondria on body mass of rats of different age].
    Samartsev VN; Kozhina OV; Rybakova SR
    Zh Evol Biokhim Fiziol; 2010; 46(2):164-6. PubMed ID: 20432713
    [No Abstract]   [Full Text] [Related]  

  • 5. [Mechanisms of mutual control of reactions and processes related to energy formation in mitochondria].
    Komissarova IA; Nartsissov IaR; Burbenskaia NM
    Biull Eksp Biol Med; 1996 Sep; 122(9):282-4. PubMed ID: 8974480
    [No Abstract]   [Full Text] [Related]  

  • 6. [Comparative study of proton- and calcium-dependent uncoupling action of palmitate in liver mitochondria of adult and aged guinea pigs Cavia porcellus].
    Samartsev VN; Kozhina OV; Polishchuk LS
    Zh Evol Biokhim Fiziol; 2006; 42(4):397-8. PubMed ID: 16944821
    [No Abstract]   [Full Text] [Related]  

  • 7. Carboxyatractylate inhibits the uncoupling effect of free fatty acids.
    Andreyev AYu ; Bondareva TO; Dedukhova VI; Mokhova EN; Skulachev VP; Volkov NI
    FEBS Lett; 1988 Jan; 226(2):265-9. PubMed ID: 3338558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of veratrine and veratridine on oxygen consumption and electrical membrane potential of isolated rat skeletal muscle and liver mitochondria.
    Silva Freitas EM; Fagian MM; da Cruz Höfling MA
    Toxicon; 2006 Jun; 47(7):780-7. PubMed ID: 16626771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of various energy substrates on the recovery of the hepatic energy level after cold storage].
    Watanabe Y
    Nihon Geka Gakkai Zasshi; 1988 Aug; 89(8):1204-10. PubMed ID: 3185487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased respiration in skeletal muscle mitochondria from cold-acclimated ducklings: uncoupling effects of free fatty acids.
    Barré H; Nedergaard J; Cannon B
    Comp Biochem Physiol B; 1986; 85(2):343-8. PubMed ID: 3780184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Action site of the systemic fungicide carboxin in the respiratory chain].
    Schewe T; Rapoport S; Böhme G; Kunz W
    Acta Biol Med Ger; 1973; 31(1):73-86. PubMed ID: 4774673
    [No Abstract]   [Full Text] [Related]  

  • 12. Effects of the nonsteroidal anti-inflammatory drug nimesulide on energy metabolism in livers from adjuvant-induced arthritic rats.
    Caparroz-Assef SM; Bersani-Amado CA; do Nascimento EA; Kelmer-Bracht AM; Ishii-Iwamoto EL
    Res Commun Mol Pathol Pharmacol; 1998 Jan; 99(1):93-116. PubMed ID: 9523358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen consumption rate of permeabilized cells and isolated mitochondria from pork M. masseter and liver examined fresh and after freeze-thawing at different pH values.
    Phung VT; Sælid E; Egelandsdal B; Volden J; Slinde E
    J Food Sci; 2011 Aug; 76(6):C929-36. PubMed ID: 22417492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of mitochondrial metabolism by the diabetogenic thiadiazine diazoxide. I. Action on succinate dehydrogenase and TCA-cycle oxidations.
    Schäfer G; Portenhauser R; Trolp R
    Biochem Pharmacol; 1971 Jun; 20(6):1271-80. PubMed ID: 5118123
    [No Abstract]   [Full Text] [Related]  

  • 15. Carnitine: the carrier transporting fatty acyls into mitochondria by means of an electrochemical gradient of H + .
    Levitsky DO; Skulachev VP
    Biochim Biophys Acta; 1972 Jul; 275(1):33-50. PubMed ID: 5049018
    [No Abstract]   [Full Text] [Related]  

  • 16. [Spontaneous endogenous ultraweak luminescence of rat liver mitochondria in conditions of normal metabolism].
    Zhuravlev AI; Tsvylev OP; Zubkova SM
    Biofizika; 1973; 18(6):1037-40. PubMed ID: 4805512
    [No Abstract]   [Full Text] [Related]  

  • 17. Tetramethylpyrazine protects palmitate-induced oxidative damage and mitochondrial dysfunction in C2C12 myotubes.
    Gao X; Zhao XL; Zhu YH; Li XM; Xu Q; Lin HD; Wang MW
    Life Sci; 2011 Apr; 88(17-18):803-9. PubMed ID: 21396380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformations and mitochondrial uncoupling activity of synthetic emerimicin fragments.
    Raj PA; Das MK; Balaram P
    Biopolymers; 1988 Apr; 27(4):683-701. PubMed ID: 3370302
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency.
    Cardoso CM; Custódio JB; Almeida LM; Moreno AJ
    Toxicol Appl Pharmacol; 2001 Nov; 176(3):145-52. PubMed ID: 11714246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mitochondria from brown adipose tissue: uncoupling of respiratory chain phosphorylation by long fatty acids and recoupling by guanosine triphosphate].
    Rafael J; Ludolph HJ; Hohorst HJ
    Hoppe Seylers Z Physiol Chem; 1969 Sep; 350(9):1121-31. PubMed ID: 5388738
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.