BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 6628359)

  • 1. Dynamics of cruciform extrusion in supercoiled DNA: use of a synthetic inverted repeat to study conformational populations.
    Lilley DM; Markham AF
    EMBO J; 1983; 2(4):527-33. PubMed ID: 6628359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural perturbation in supercoiled DNA: hypersensitivity to modification by a single-strand-selective chemical reagent conferred by inverted repeat sequences.
    Lilley DM
    Nucleic Acids Res; 1983 May; 11(10):3097-112. PubMed ID: 6304622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA.
    Zheng GX; Sinden RR
    J Biol Chem; 1988 Apr; 263(11):5356-61. PubMed ID: 3356690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress-induced cruciform formation in a cloned d(CATG)10 sequence.
    Naylor LH; Lilley DM; van de Sande JH
    EMBO J; 1986 Sep; 5(9):2407-13. PubMed ID: 3023073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleosome "phasing" and cruciform structures in circular supercoiled pBR322 DNA.
    Caffarelli E; Franzini C; Leoni L; Savino M
    Cell Biophys; 1984 Mar; 6(1):23-31. PubMed ID: 6204760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interactions of enzyme and chemical probes with inverted repeats in supercoiled DNA.
    Lilley DM; Hallam LR
    J Biomol Struct Dyn; 1983 Oct; 1(1):169-82. PubMed ID: 6401110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic, sequence-dependent DNA structure as exemplified by cruciform extrusion from inverted repeats in negatively supercoiled DNA.
    Lilley DM
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 1():101-12. PubMed ID: 6305553
    [No Abstract]   [Full Text] [Related]  

  • 8. A cruciform in the direct repeats of the yeast 2 micron DNA: Selective S1 nuclease cleavage at one of the three homologous palindromes.
    Asakura Y; Kikuchi Y; Yanagida M
    J Biochem; 1985 Jul; 98(1):41-7. PubMed ID: 2995328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetic properties of cruciform extrusion are determined by DNA base-sequence.
    Lilley DM
    Nucleic Acids Res; 1985 Mar; 13(5):1443-65. PubMed ID: 4000940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The physical chemistry of cruciform structures in supercoiled DNA molecules.
    Lilley DM; Gough GW; Hallam LR; Sullivan KM
    Biochimie; 1985; 67(7-8):697-706. PubMed ID: 3002491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hairpin-loop formation by inverted repeats in supercoiled DNA is a local and transmissible property.
    Lilley DM
    Nucleic Acids Res; 1981 Mar; 9(6):1271-89. PubMed ID: 6262723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The supercoil-stabilised cruciform of ColE1 is hyper-reactive to osmium tetroxide.
    Lilley DM; Palecek E
    EMBO J; 1984 May; 3(5):1187-92. PubMed ID: 6329743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage of cruciform DNA structures by an activity from Saccharomyces cerevisiae.
    West SC; Körner A
    Proc Natl Acad Sci U S A; 1985 Oct; 82(19):6445-9. PubMed ID: 3901001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A native cruciform DNA structure probed in bacteria by recombinant T7 endonuclease.
    Panayotatos N; Fontaine A
    J Biol Chem; 1987 Aug; 262(23):11364-8. PubMed ID: 3038915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells.
    Zheng GX; Kochel T; Hoepfner RW; Timmons SE; Sinden RR
    J Mol Biol; 1991 Sep; 221(1):107-22. PubMed ID: 1920399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long range structural communication between sequences in supercoiled DNA. Sequence dependence of contextual influence on cruciform extrusion mechanism.
    Sullivan KM; Murchie AI; Lilley DM
    J Biol Chem; 1988 Sep; 263(26):13074-82. PubMed ID: 2843507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Length-dependent cruciform extrusion in d(GTAC)n sequences.
    Naylor LH; Yee HA; van de Sande JH
    J Biomol Struct Dyn; 1988 Feb; 5(4):895-912. PubMed ID: 3271495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized chemical hyperreactivity in supercoiled DNA: evidence for base unpairing in sequences that induce low-salt cruciform extrusion.
    Furlong JC; Sullivan KM; Murchie AI; Gough GW; Lilley DM
    Biochemistry; 1989 Mar; 28(5):2009-17. PubMed ID: 2541769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-range structural effects in supercoiled DNA: statistical thermodynamics reveals a correlation between calculated cooperative melting and contextual influence on cruciform extrusion.
    Schaeffer F; Yeramian E; Lilley DM
    Biopolymers; 1989 Aug; 28(8):1449-73. PubMed ID: 2752100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of cruciform formation in supercoiled DNA: initial opening of central basepairs in salt-dependent extrusion.
    Murchie AI; Lilley DM
    Nucleic Acids Res; 1987 Dec; 15(23):9641-54. PubMed ID: 3697079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.