These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 6628575)

  • 1. Distribution of HMW proteins and crystallins in cataractous lenses from undernourished and well-nourished subjects.
    Bhat KS
    Exp Eye Res; 1983 Sep; 37(3):267-71. PubMed ID: 6628575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in lens proteins in undernourished and well-nourished patients with cataract.
    Bhat KS
    Br J Nutr; 1982 May; 47(3):483-8. PubMed ID: 7082620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in proportion and molecular weight of native crystallins from single human lenses upon aging and formation of nuclear cataract.
    Bessems GJ; Hoenders HJ; Wollensak J
    Exp Eye Res; 1983 Dec; 37(6):627-37. PubMed ID: 6662209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens.
    Fujii N; Awakura M; Takemoto L; Inomata M; Takata T; Fujii N; Saito T
    Mol Vis; 2003 Jul; 9():315-22. PubMed ID: 12847419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatofocusing for separation of human cataractous lens low molecular weight proteins.
    Kabasawa I; Watanabe M; Kimura M
    Jpn J Ophthalmol; 1983; 27(4):592-7. PubMed ID: 6668752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational changes in soluble lens proteins during the development of senile nuclear cataract.
    McNamara MK; Augusteyn RC
    Curr Eye Res; 1984 Apr; 3(4):571-83. PubMed ID: 6713956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormalities of crystallins in the lens of the CatFraser mouse.
    Garber AT; Stirk L; Gold RJ
    Exp Eye Res; 1983 Feb; 36(2):165-9. PubMed ID: 6825736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations in the soluble alpha-crystallin proteins from human cataractous lenses.
    Alao JF
    Afr J Med Med Sci; 1978 Mar; 7(1):49-56. PubMed ID: 97955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM).
    Ashida Y; Takeda T; Hosokawa M
    Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of water-soluble crystallins in microsectioned cataractous lenses from one hundred Egyptian patients.
    Bours J; el-Layeh AA; Emarah MH; Rink H
    Ophthalmic Res; 1995; 27 Suppl 1():54-61. PubMed ID: 8577463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Heterogeneity of human cataractous lens low molecular weight crystallins--study of concanavalin A binding proteins by two-dimensional electrophoresis].
    Kodama T; Kodama T
    Nippon Ganka Gakkai Zasshi; 1989 Feb; 93(2):234-8. PubMed ID: 2773705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of protein molecular groups in the normal and cataractous lens.
    François J; Rabaey M; Boyen-Rikkers I
    Exp Eye Res; 1969 Apr; 8(2):157-60. PubMed ID: 5786865
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on lens proteins of mice with hereditary cataract. I. Comparative studies on the chemical and immunochemical properties of the soluble proteins of cataractous and normal mouse lenses.
    Wada E; Sugiura T; Nakamura H; Tsumita T
    Biochim Biophys Acta; 1981 Feb; 667(2):251-9. PubMed ID: 7213804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Lens crystallin leakage in aqueous humor from human cataractous lenses].
    Kodama T
    Nippon Ganka Gakkai Zasshi; 1991 Nov; 95(11):1065-70. PubMed ID: 1759646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M; Takemoto L
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of lens proteins. II. gamma-Crystallin of normal and cataractous rat lenses.
    Wagner BJ; Fu SC
    Exp Eye Res; 1978 Mar; 26(3):255-65. PubMed ID: 639878
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.