BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 6628675)

  • 1. Role of calcium in serum-stimulation of hexose transport in muscle cells.
    Klip A; Li G; Logan WJ
    FEBS Lett; 1983 Oct; 162(2):329-33. PubMed ID: 6628675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of calcium ions in insulin action on hexose transport in L6 muscle cells.
    Klip A; Li G; Logan WJ
    Am J Physiol; 1984 Sep; 247(3 Pt 1):E297-304. PubMed ID: 6433719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of sugar uptake response to insulin by serum depletion in fusing L6 myoblasts.
    Klip A; Li G; Logan WJ
    Am J Physiol; 1984 Sep; 247(3 Pt 1):E291-6. PubMed ID: 6383069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites.
    Klip A; Logan WJ; Li G
    Biochim Biophys Acta; 1982 May; 687(2):265-80. PubMed ID: 7093257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of hexose transport by metformin in L6 muscle cells in culture.
    Klip A; Gumà A; Ramlal T; Bilan PJ; Lam L; Leiter LA
    Endocrinology; 1992 May; 130(5):2535-44. PubMed ID: 1572281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin-induced cytoplasmic alkalinization and glucose transport in muscle cells.
    Klip A; Ramlal T; Cragoe EJ
    Am J Physiol; 1986 May; 250(5 Pt 1):C720-8. PubMed ID: 3010729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of hexose transport mutants in L6 rat myoblasts.
    D'Amore T; Duronio V; Cheung MO; Lo TC
    J Cell Physiol; 1986 Jan; 126(1):29-36. PubMed ID: 3944196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexose transport in L6 rat myoblasts. I. Rate-limiting step, kinetic properties, and evidence for two systems.
    D'Amore T; Lo TC
    J Cell Physiol; 1986 Apr; 127(1):95-105. PubMed ID: 3958060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo location of the rate-limiting step of hexose uptake in muscle and brain tissue of rats.
    Furler SM; Jenkins AB; Storlien LH; Kraegen EW
    Am J Physiol; 1991 Sep; 261(3 Pt 1):E337-47. PubMed ID: 1887881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin stimulation of glucose uptake and the transmembrane potential of muscle cells in culture.
    Klip A; Ramlal T; Walker D
    FEBS Lett; 1986 Sep; 205(1):11-4. PubMed ID: 3527748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of hexose uptake in rat thymic lymphocytes by phorbol ester. A role for Ca2+ and Na+/H+ exchange?
    Klip A; Rothstein A; Mack E
    Biochem Biophys Res Commun; 1984 Oct; 124(1):14-22. PubMed ID: 6093781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-adrenergic stimulation of Ca2+ fluxes, endocytosis, hexose transport, and amino acid transport in mouse kidney cortex is mediated by polyamine synthesis.
    Koenig H; Goldstone AD; Lu CY
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7210-4. PubMed ID: 6580640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial insulin resistance in the mouse BC3H-1 cell line: absent hexose-independent actions of insulin.
    Luttrell L; Rogol AD
    Endocrinology; 1986 Jul; 119(1):331-42. PubMed ID: 3087735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexose transport in L6 rat myoblasts. II. The effects of sulfhydryl reagents.
    D'Amore T; Lo TC
    J Cell Physiol; 1986 Apr; 127(1):106-13. PubMed ID: 3007535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of hexose transport in L6 rat myoblasts by antibody and by glucose starvation.
    D'Amore T; Cheung MO; Duronio V; Lo TC
    Biochem J; 1986 Sep; 238(3):831-6. PubMed ID: 3800963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of glucose transport and GLUT1 glucose transporter expression by O2 in muscle cells in culture.
    Bashan N; Burdett E; Hundal HS; Klip A
    Am J Physiol; 1992 Mar; 262(3 Pt 1):C682-90. PubMed ID: 1312781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derepression and carrier turnover: evidence for two distinct mechanisms of hexose transport regulation in animal cells.
    Christopher CW; Colby WW; Ullrey D
    J Cell Physiol; 1976 Dec; 89(4):683-92. PubMed ID: 188837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of cell isolation and incubation procedures on Ca2+ dependence of glucose transport in isolated cardiac myocytes.
    Bihler I; Prayag R; Sawh PC
    Can J Cardiol; 1987; 3(1):23-32. PubMed ID: 3030519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Ca2+ and Mg2+ in neutrophil hexose transport.
    O'Flaherty JT; Cousart S; Swendsen CL; DeChatelet LR; Bass DA; Love SH; McCall CE
    Biochim Biophys Acta; 1981 Jan; 640(1):223-30. PubMed ID: 6783085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid stimulation of glucose transport by mitochondrial uncoupling depends in part on cytosolic Ca2+ and cPKC.
    Khayat ZA; Tsakiridis T; Ueyama A; Somwar R; Ebina Y; Klip A
    Am J Physiol; 1998 Dec; 275(6):C1487-97. PubMed ID: 9843710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.