These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Changes in passive electric parameters of human erythrocyte membrane during hyperthermia: role of spectrin phosphorylation. Ivanov IT Gen Physiol Biophys; 1999 Jun; 18(2):165-80. PubMed ID: 10517291 [TBL] [Abstract][Full Text] [Related]
5. Calmodulin-dependent spectrin kinase activity in human erythrocytes. Huestis WH; Nelson MJ; Ferrell JE Prog Clin Biol Res; 1981; 56():137-55. PubMed ID: 6120520 [TBL] [Abstract][Full Text] [Related]
6. Evidence that spectrin is a determinant of shape and deformability in the human erythrocyte. Lux SE; John KM Prog Clin Biol Res; 1977; 17():481-91. PubMed ID: 928462 [No Abstract] [Full Text] [Related]
7. Alteration by procaine of spectrin cross-links, deformability, and fluidity related properties of the erythrocyte membrane. Geyer G; Halbhuber KJ; Stibenz D; Scheven C; Unger J; Benser A; Fröber R; Makovitzky J; Geiling D; Geiling HG Folia Haematol Int Mag Klin Morphol Blutforsch; 1980; 107(3):472-86. PubMed ID: 6159284 [TBL] [Abstract][Full Text] [Related]
8. On the mechanism of red blood cell shape change and release of spectrin-free vesicles. Müller H; Schmidt U; Lutz HU Acta Biol Med Ger; 1981; 40(4-5):413-7. PubMed ID: 6274111 [TBL] [Abstract][Full Text] [Related]
9. Spectrin tetramer-dimer equilibrium and the stability of erythrocyte membrane skeletons. Liu SC; Palek J Nature; 1980 Jun; 285(5766):586-8. PubMed ID: 6893219 [No Abstract] [Full Text] [Related]
10. Impedance spectroscopy of human erythrocyte membrane: effect of frequency at the spectrin denaturation transition temperature. Ivanov IT Bioelectrochemistry; 2010 Jun; 78(2):181-5. PubMed ID: 19767250 [TBL] [Abstract][Full Text] [Related]
11. Membrane phosphorylation in intact human erythrocytes. Reimann B; Klatt D; Tsamaloukas AG; Maretzki D Acta Biol Med Ger; 1981; 40(4-5):487-93. PubMed ID: 7315094 [TBL] [Abstract][Full Text] [Related]
12. Is there any connection between heat inactivation of spectrin-dependent ATPase and loss of smooth biconcave shape of red cells? Mircevová L; Kodícek M; Marík T Cell Biochem Funct; 1983 Oct; 1(3):145-6. PubMed ID: 6235978 [TBL] [Abstract][Full Text] [Related]
13. Study of spectrin phosphorylation and polymerization in normal and spherocytic red blood-cells [proceedings]. Devogel M; Vincentelli J; Polastro E; Schnek G; Léonis J Arch Int Physiol Biochim; 1979 Oct; 87(4):805-7. PubMed ID: 93915 [No Abstract] [Full Text] [Related]
14. State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes. Anderson JM; Tyler JM J Biol Chem; 1980 Feb; 255(4):1259-65. PubMed ID: 7354025 [No Abstract] [Full Text] [Related]
16. The incorporation of 32 P into spectrin aggregates following incubation of erythrocytes in 32 P-labelled inorganic phosphate. Dunbar JC; Ralston GB Biochim Biophys Acta; 1978 Jul; 510(2):283-91. PubMed ID: 667046 [TBL] [Abstract][Full Text] [Related]
17. Effect of anti-spectrin antibody and ATP on deformability of resealed erythrocyte membranes. Nakashima K; Beutler E Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3823-5. PubMed ID: 278995 [TBL] [Abstract][Full Text] [Related]
18. In vivo and in vitro turnover of spectrin phosphate in erythrocytes. Smith JE; Moore K J Lab Clin Med; 1980 Jun; 95(6):808-15. PubMed ID: 6770016 [TBL] [Abstract][Full Text] [Related]
19. Vesicles isolated from ATP-depleted erythrocytes and out of thrombocyte-rich plasma. Lutz HU J Supramol Struct; 1978; 8(3):375-89. PubMed ID: 723272 [TBL] [Abstract][Full Text] [Related]
20. Spectrin binding and the control of membrane protein mobility. Goodman SR; Branton D J Supramol Struct; 1978; 8(4):455-63. PubMed ID: 723278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]