BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 6630028)

  • 1. Postnatal growth and differentiation of muscle fibres in the mouse. II. A histochemical and morphometrical investigation of dystrophic muscle.
    Wirtz P; Loermans HM; Peer PG; Reintjes AG
    J Anat; 1983 Aug; 137 (Pt 1)(Pt 1):127-42. PubMed ID: 6630028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal growth and differentiation of muscle fibres in the mouse. I. A histochemical and morphometrical investigation of normal muscle.
    Wirtz P; Loermans HM; Peer PG; Reintjes AG
    J Anat; 1983 Aug; 137 (Pt 1)(Pt 1):109-26. PubMed ID: 6226633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles.
    Earnshaw JC; Kyprianou P; Krishan K; Dhoot GK
    Histochem Cell Biol; 2002 Jul; 118(1):19-27. PubMed ID: 12122443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postnatal muscle fibre histochemistry in the rat.
    Ho KW; Heusner WW; Van Huss J; Van Huss WD
    J Embryol Exp Morphol; 1983 Aug; 76():37-49. PubMed ID: 6226760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abnormal distribution of fiber types in the slow-twitch soleus muscle of the C57BL/6J dy2J/dy2J dystrophic mouse during postnatal development.
    Ovalle WK; Bressler BH; Jasch LG; Slonecker CE
    Am J Anat; 1983 Nov; 168(3):291-304. PubMed ID: 6650441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histomorphometrical aspects of the postnatal development of masticatory muscle in the muscular dystrophic mouse.
    Vilmann H; Kirkeby S
    Anat Anz; 1991; 172(2):109-16. PubMed ID: 2048740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of muscle spindles in slow and fast neonatal muscles of normal and dystrophic mice.
    Johnson MI; Ovalle WK
    Am J Anat; 1986 Apr; 175(4):413-27. PubMed ID: 2940857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myosatellite cells, growth, and regeneration in murine dystrophic muscle: a quantitative study.
    Ontell M; Feng KC; Klueber K; Dunn RF; Taylor F
    Anat Rec; 1984 Feb; 208(2):159-74. PubMed ID: 6703334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of human oro-facial and masticatory muscles with respect to fibre types, myosins and capillaries. Morphological, enzyme-histochemical, immuno-histochemical and biochemical investigations.
    Stål P
    Swed Dent J Suppl; 1994; 98():1-55. PubMed ID: 7801228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of collagen and altered fiber-type ratios as indicators of abnormal muscle gene expression in the mdx dystrophic mouse.
    Marshall PA; Williams PE; Goldspink G
    Muscle Nerve; 1989 Jul; 12(7):528-37. PubMed ID: 2779602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between capillarisation and fibre types during compensatory hypertrophy of the plantaris muscle in the rat.
    Degens H; Turek Z; Hoofd LJ; Van't Hof MA; Binkhorst RA
    J Anat; 1992 Jun; 180 ( Pt 3)(Pt 3):455-63. PubMed ID: 1487438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histochemical and morphometrical characterization and distribution of fibre types in four muscles of ostrich (Struthio camelus).
    Velotto S; Crasto A
    Anat Histol Embryol; 2004 Oct; 33(5):251-6. PubMed ID: 15352876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The growth and differentiation of porcine skeletal muscle fibre types and the influence of birthweight.
    Handel SE; Stickland NC
    J Anat; 1987 Jun; 152():107-19. PubMed ID: 2958439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long term functional improvement of dystrophic mouse leg muscles upon early immobilization.
    Wirtz P; Loermans H; Wallinga-de Jonge W
    Br J Exp Pathol; 1986 Apr; 67(2):201-8. PubMed ID: 3707850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryonic differentiation of fibre types in normal, paralysed and aneural avian superior oblique muscle.
    Sohal GS; Sickles DW
    J Embryol Exp Morphol; 1986 Jul; 96():79-97. PubMed ID: 2949042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation of rat skeletal muscle fibres during development and ageing.
    Punkt K; Naupert A; Asmussen G
    Acta Histochem; 2004; 106(2):145-54. PubMed ID: 15147636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of tenotomy and overload on the postnatal development of muscle fibre histochemistry in the cat triceps surae.
    Gollvik L; Kellerth JO; Ulfhake B
    Acta Physiol Scand; 1988 Mar; 132(3):353-62. PubMed ID: 2465666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of dystrophic muscle following multiple injections of bupivacaine.
    Martin H; Ontell M
    Muscle Nerve; 1988 Jun; 11(6):588-96. PubMed ID: 3386667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium and strontium activation of single skinned muscle fibres of normal and dystrophic mice.
    Fink RH; Stephenson DG; Williams DA
    J Physiol; 1986 Apr; 373():513-25. PubMed ID: 3746681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation in dystrophic muscle cultures from mice of different ages.
    Bryers PS; Ecob MS
    Muscle Nerve; 1984 May; 7(4):332-6. PubMed ID: 6727917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.