These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 6630211)
1. Characterization of ascorbic acid transport by adrenomedullary chromaffin cells. Evidence for Na+-dependent co-transport. Diliberto EJ; Heckman GD; Daniels AJ J Biol Chem; 1983 Nov; 258(21):12886-94. PubMed ID: 6630211 [TBL] [Abstract][Full Text] [Related]
2. The in situ kinetics of dopamine beta-hydroxylase in bovine adrenomedullary chromaffin cells. Intravesicular compartmentation reduces apparent affinity for the cofactor ascorbate. Menniti FS; Knoth J; Peterson DS; Diliberto EJ J Biol Chem; 1987 Jun; 262(16):7651-7. PubMed ID: 3584135 [TBL] [Abstract][Full Text] [Related]
3. Evidence for the release of newly acquired ascorbate and alpha-aminoisobutyric acid from the cytosol of adrenomedullary chromaffin cells through specific transporter mechanisms. Knoth J; Viveros OH; Diliberto EJ J Biol Chem; 1987 Oct; 262(29):14036-41. PubMed ID: 3654652 [TBL] [Abstract][Full Text] [Related]
4. Secretion of newly taken-up ascorbic acid by adrenomedullary chromaffin cells. Daniels AJ; Dean G; Viveros OH; Diliberto EJ Science; 1982 May; 216(4547):737-9. PubMed ID: 7079733 [TBL] [Abstract][Full Text] [Related]
5. Ascorbic acid regulation of norepinephrine biosynthesis in isolated chromaffin granules from bovine adrenal medulla. Levine M; Morita K; Heldman E; Pollard HB J Biol Chem; 1985 Dec; 260(29):15598-603. PubMed ID: 3877726 [TBL] [Abstract][Full Text] [Related]
6. Secretion of newly taken up ascorbic acid by adrenomedullary chromaffin cells originates from a compartment different from the catecholamine storage vesicle. Daniels AJ; Dean G; Viveros OH; Diliberto EJ Mol Pharmacol; 1983 Mar; 23(2):437-44. PubMed ID: 6835202 [TBL] [Abstract][Full Text] [Related]
7. Role of ascorbic acid in dopamine beta-hydroxylation. The endogenous enzyme cofactor and putative electron donor for cofactor regeneration. Menniti FS; Knoth J; Diliberto EJ J Biol Chem; 1986 Dec; 261(36):16901-8. PubMed ID: 3097015 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the ascorbic acid transport by 3T6 fibroblasts. Padh H; Aleo JJ Biochim Biophys Acta; 1987 Jul; 901(2):283-90. PubMed ID: 3607050 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of norepinephrine biosynthesis by ascorbic acid in cultured bovine chromaffin cells. Levine M; Morita K; Pollard H J Biol Chem; 1985 Oct; 260(24):12942-7. PubMed ID: 3932336 [TBL] [Abstract][Full Text] [Related]
10. Subcellular distribution of ascorbate in bovine adrenal medulla. Evidence for accumulation in chromaffin granules against a concentration gradient. Ingebretsen OC; Terland O; Flatmark T Biochim Biophys Acta; 1980 Mar; 628(2):182-9. PubMed ID: 7357036 [TBL] [Abstract][Full Text] [Related]
11. Ascorbic acid and catecholamine secretion from cultured chromaffin cells. Levine M; Asher A; Pollard H; Zinder O J Biol Chem; 1983 Nov; 258(21):13111-5. PubMed ID: 6630224 [TBL] [Abstract][Full Text] [Related]
12. Evidence for an ascorbate shuttle for the transfer of reducing equivalents across chromaffin granule membranes. Beers MF; Johnson RG; Scarpa A J Biol Chem; 1986 Feb; 261(6):2529-35. PubMed ID: 3949732 [TBL] [Abstract][Full Text] [Related]
13. Ascorbic acid within chromaffin granules. In situ kinetics of norepinephrine biosynthesis. Dhariwal KR; Washko P; Hartzell WO; Levine M J Biol Chem; 1989 Sep; 264(26):15404-9. PubMed ID: 2768269 [TBL] [Abstract][Full Text] [Related]
14. High-affinity sodium-dependent uptake of ascorbic acid by rat osteoblasts. Wilson JX; Dixon SJ J Membr Biol; 1989 Oct; 111(1):83-91. PubMed ID: 2810353 [TBL] [Abstract][Full Text] [Related]
15. Ascorbic acid uptake by a high-affinity sodium-dependent mechanism in cultured rat astrocytes. Wilson JX J Neurochem; 1989 Oct; 53(4):1064-71. PubMed ID: 2549195 [TBL] [Abstract][Full Text] [Related]
16. A kinetic analysis of electron transport across chromaffin vesicle membranes. Kelley PM; Njus D J Biol Chem; 1988 Mar; 263(8):3799-804. PubMed ID: 3346224 [TBL] [Abstract][Full Text] [Related]
17. Electron transfer across the chromaffin granule membrane. Njus D; Knoth J; Cook C; Kelly PM J Biol Chem; 1983 Jan; 258(1):27-30. PubMed ID: 6294100 [TBL] [Abstract][Full Text] [Related]
18. Stimulatory effect of ascorbic acid on norepinephrine biosynthesis in digitonin-permeabilized adrenal medullary chromaffin cells. Morita K; Levine M; Pollard HB J Neurochem; 1986 Mar; 46(3):939-45. PubMed ID: 3485180 [TBL] [Abstract][Full Text] [Related]
19. Na+-linked active transport of ascorbate into cultured bovine retinal pigment epithelial cells: heterologous inhibition by glucose. Khatami M Membr Biochem; 1987-1988; 7(2):115-30. PubMed ID: 3331406 [TBL] [Abstract][Full Text] [Related]
20. Reaction of ascorbic acid with cytochrome b561. Concerted electron and proton transfer. Jalukar V; Kelley PM; Njus D J Biol Chem; 1991 Apr; 266(11):6878-82. PubMed ID: 1849895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]