These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6631243)

  • 1. Metabolism of straight saturated medium chain length (C9 to C12) dicarboxylic acids.
    Passi S; Nazzaro-Porro M; Picardo M; Mingrone G; Fasella P
    J Lipid Res; 1983 Sep; 24(9):1140-7. PubMed ID: 6631243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and degradation of dicarboxylic acids in relation to alterations in fatty acid oxidation in rats.
    Mortensen PB
    Biochim Biophys Acta; 1992 Feb; 1124(1):71-9. PubMed ID: 1543729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of sodium salts of saturated medium chain length (C6, C9, C10 and C12) dicarboxylic acids on the uterine horn of rat in vitro.
    Mingrone G; Mancinelli R; Metro D
    Q J Exp Physiol; 1988 Mar; 73(2):153-62. PubMed ID: 3164112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biological origin of ketotic dicarboxylic aciduria. In vivo and in vitro investigations of the omega-oxidation of C6-C16-monocarboxylic acids in unstarved, starved and diabetic rats.
    Mortensen PB; Gregersen N
    Biochim Biophys Acta; 1981 Dec; 666(3):394-404. PubMed ID: 6798996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of dicarboxylic acids in vivo and in the perfused kidney of the rat.
    Bergseth S; Hokland BM; Bremer J
    Biochim Biophys Acta; 1988 Jul; 961(1):103-9. PubMed ID: 3132982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the biologic origin of C6-C10-dicarboxylic and C6-C10-omega-1-hydroxy monocarboxylic acids in human and rat with acyl-CoA dehydrogenation deficiencies: in vitro studies on the omega- and omega-1-oxidation of medium-chain (C6-C12) fatty acids in human and rat liver.
    Gregersen N; Mortensen PB; Kølvraa S
    Pediatr Res; 1983 Oct; 17(10):828-34. PubMed ID: 6634246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biological origin of ketotic dicarboxylic aciduria. II. In vivo and in vitro investigations of the beta-oxidation of C8-C16-dicarboxylic acids in unstarved, starved and diabetic rats.
    Mortensen PB; Gregersen N
    Biochim Biophys Acta; 1982 Mar; 710(3):477-84. PubMed ID: 7074126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkylthioacetic acids (3-thia fatty acids) are metabolized and excreted as shortened dicarboxylic acids in vivo.
    Bergseth S; Bremer J
    Biochim Biophys Acta; 1990 May; 1044(2):237-42. PubMed ID: 2344442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison between dodecanedioic acid and long-chain triglycerides as an energy source in liquid formula diets.
    Mingrone G; De Gaetano A; Greco AV; Capristo E; Benedetti G; Castagneto M; Gasbarrini G
    JPEN J Parenter Enteral Nutr; 1999; 23(2):80-4. PubMed ID: 10081997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C6-C10-dicarboxylic aciduria: biochemical considerations in relation to diagnosis of beta-oxidation defects.
    Gregersen N; Kølvraa S; Mortensen PB; Rasmussen K
    Scand J Clin Lab Invest Suppl; 1982; 161():15-27. PubMed ID: 6959231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aedes aegypti (Diptera: Culicidae) biting deterrence: structure-activity relationship of saturated and unsaturated fatty acids.
    Ali A; Cantrell CL; Bernier UR; Duke SO; Schneider JC; Agramonte NM; Khan I
    J Med Entomol; 2012 Nov; 49(6):1370-8. PubMed ID: 23270165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering for the production of dicarboxylic acids and diamines.
    Chae TU; Ahn JH; Ko YS; Kim JW; Lee JA; Lee EH; Lee SY
    Metab Eng; 2020 Mar; 58():2-16. PubMed ID: 30905694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of intravenous medium- and long-chain triglycerides and carnitine on the excretion of dicarboxylic acids.
    Böhles H; Akçetin Z; Lehnert W
    JPEN J Parenter Enteral Nutr; 1987; 11(1):46-8. PubMed ID: 3102781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacokinetic analysis of dodecanedioic acid in humans from bolus data.
    Bertuzzi A; Mingrone G; Gandolfi A; Greco AV; Salinari S
    JPEN J Parenter Enteral Nutr; 1995; 19(6):498-501. PubMed ID: 8748365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanide-insensitive and clofibrate enhanced beta-oxidation of dodecanedioic acid in rat liver. An indication of peroxisomal beta-oxidation of N-dicarboxylic acids.
    Mortensen PB; Kølvraa S; Gregersen N; Rasmussen K
    Biochim Biophys Acta; 1982 Nov; 713(2):393-7. PubMed ID: 7150619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saturated dicarboxylic acids as products of unsaturated fatty acid oxidation.
    Passi S; Picardo M; De Luca C; Nazzaro-Porro M; Rossi L; Rotilio G
    Biochim Biophys Acta; 1993 Jun; 1168(2):190-8. PubMed ID: 8504154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additional oxidized and alkyl chain breakdown metabolites of the plasticizer DINCH in urine after oral dosage to human volunteers.
    Schütze A; Otter R; Modick H; Langsch A; Brüning T; Koch HM
    Arch Toxicol; 2017 Jan; 91(1):179-188. PubMed ID: 26976210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic origin of urinary 3-hydroxy dicarboxylic acids.
    Tserng KY; Jin SJ
    Biochemistry; 1991 Mar; 30(9):2508-14. PubMed ID: 2001377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of urinary and microsomal metabolites of geranylgeranylacetone in rats.
    Nishizawa Y; Abe S; Yamada K; Nakamura T; Yamatsu I; Kinoshita K
    Xenobiotica; 1987 May; 17(5):575-84. PubMed ID: 3604262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fate of trimethylamine in the rat.
    al-Waiz M; Mitchell SC
    Drug Metabol Drug Interact; 1991; 9(1):41-8. PubMed ID: 1893753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.