BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6631420)

  • 41. Slime-producing Staphylococcus epidermidis and S. aureus in acute bacterial conjunctivitis in soft contact lens wearers.
    Catalanotti P; Lanza M; Del Prete A; Lucido M; Catania MR; Gallè F; Boggia D; Perfetto B; Rossano F
    New Microbiol; 2005 Oct; 28(4):345-54. PubMed ID: 16386019
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of adherence and urine growth rate properties of Staphylococcus saprophyticus and Staphylococcus epidermidis.
    Almeida RJ; Jorgensen JH
    Eur J Clin Microbiol; 1984 Dec; 3(6):542-5. PubMed ID: 6526020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Mechanisms of adhesion of Staphylococci to biomaterials: effect of fusidic acid].
    Drugeon HB; Carpentier E
    Pathol Biol (Paris); 1993 Apr; 41(4):392-8. PubMed ID: 8233641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of aspirin on adherence of slime-producing, coagulase-negative staphylococci to vascular grafts.
    Demirag MK; Esen S; Zivalioglu M; Leblebicioglu H; Keceligil HT
    Ann Vasc Surg; 2007 Jul; 21(4):464-7. PubMed ID: 17628264
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface properties of Staphylococcus saprophyticus and Staphylococcus epidermidis as studied by adherence tests and two-polymer, aqueous phase systems.
    Colleen S; Hovelius B; Wieslander A; Mårdh PA
    Acta Pathol Microbiol Scand B; 1979 Dec; 87(6):321-8. PubMed ID: 395823
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adherence and kinetics of biofilm formation of Staphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions.
    Baillif S; Ecochard R; Casoli E; Freney J; Burillon C; Kodjikian L
    J Cataract Refract Surg; 2008 Jan; 34(1):153-8. PubMed ID: 18165096
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coagulase-negative staphylococci.
    J Med Microbiol; 1986 Dec; 22(4):285-95. PubMed ID: 3540303
    [No Abstract]   [Full Text] [Related]  

  • 48. Gene expression during S. epidermidis biofilm formation on biomaterials.
    Patel JD; Colton E; Ebert M; Anderson JM
    J Biomed Mater Res A; 2012 Nov; 100(11):2863-9. PubMed ID: 22623350
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exclusion of uropathogen adhesion to polymer surfaces by Lactobacillus acidophilus.
    Hawthorn LA; Reid G
    J Biomed Mater Res; 1990 Jan; 24(1):39-46. PubMed ID: 2105962
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mediation of Staphylococcus saprophyticus adherence to uroepithelial cells by lipoteichoic acid.
    Teti G; Chiofalo MS; Tomasello F; Fava C; Mastroeni P
    Infect Immun; 1987 Mar; 55(3):839-42. PubMed ID: 3818102
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Antimicrobial agents and adhesion of coagulase-negative staphylococci].
    Gómez-García AC; Pérez-Giraldo C; Rodríguez-Benito A
    Enferm Infecc Microbiol Clin; 1996 Apr; 14(4):261-6. PubMed ID: 9044644
    [No Abstract]   [Full Text] [Related]  

  • 52. Blood proteins do not promote adherence of coagulase-negative staphylococci to biomaterials.
    Muller E; Takeda S; Goldmann DA; Pier GB
    Infect Immun; 1991 Sep; 59(9):3323-6. PubMed ID: 1879947
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A.
    Sadovskaya I; Vinogradov E; Flahaut S; Kogan G; Jabbouri S
    Infect Immun; 2005 May; 73(5):3007-17. PubMed ID: 15845508
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparative study on growth in soft-agar, adherence to glass and haemolysis types of coagulase-negative staphylococci.
    Szücs I; Sztroj T; Papp-Falusi E; Andirkó I; Rédai I; Rozgonyi F
    Acta Microbiol Hung; 1993; 40(3):181-9. PubMed ID: 8191864
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adhesion of coagulase-negative staphylococci grouped according to physico-chemical surface properties.
    van der Mei HC; van de Belt-Gritter B; Reid G; Bialkowska-Hobrzanska H; Busscher HJ
    Microbiology (Reading); 1997 Dec; 143 ( Pt 12)():3861-3870. PubMed ID: 9421910
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modulation of ENaC, CFTR, and iNOS expression in bronchial epithelial cells after stimulation with Staphylococcus epidermidis (94B080) and Staphylococcus aureus (90B083).
    Hussain R; Oliynyk I; Roomans GM; Björkqvist M
    APMIS; 2013 Sep; 121(9):814-26. PubMed ID: 23879620
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cell surface hydrophobicity and slime production of Staphylococcus epidermidis Brazilian isolates.
    Krepsky N; Rocha Ferreira RB; Ferreira Nunes AP; Casado Lins UG; Costa e Silva Filho F; de Mattos-Guaraldi AL; Netto-dosSantos KR
    Curr Microbiol; 2003 Apr; 46(4):280-6. PubMed ID: 12732978
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An in vitro model for studying the effects of slime and nonslime-forming Staphylococcus epidermidis contamination of intravenous catheters.
    Mulkey MW; Rosenquist MD; Kealey GP; Lewis RW
    Am Surg; 1992 Apr; 58(4):220-4. PubMed ID: 1586079
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adherence of Staphylococcus epidermidis to fibrin-platelet clots in vitro mediated by lipoteichoic acid.
    Chugh TD; Burns GJ; Shuhaiber HJ; Bahr GM
    Infect Immun; 1990 Feb; 58(2):315-9. PubMed ID: 2298482
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vitro measurement of the adherence of Staphylococcus epidermidis to plastic by using cellular urease as a marker.
    Dunne WM; Burd EM
    Appl Environ Microbiol; 1991 Mar; 57(3):863-6. PubMed ID: 2039236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.