BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 6631471)

  • 21. Moxonidine into the lateral parabrachial nucleus modifies postingestive signals involved in sodium intake control.
    Gasparini S; Menani JV; Daniels D
    Neuroscience; 2015 Jan; 284():768-774. PubMed ID: 25264033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The bad taste of medicines: overview of basic research on bitter taste.
    Mennella JA; Spector AC; Reed DR; Coldwell SE
    Clin Ther; 2013 Aug; 35(8):1225-46. PubMed ID: 23886820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contribution of the TRPV1 channel to salt taste quality in mice as assessed by conditioned taste aversion generalization and chorda tympani nerve responses.
    Smith KR; Treesukosol Y; Paedae AB; Contreras RJ; Spector AC
    Am J Physiol Regul Integr Comp Physiol; 2012 Dec; 303(11):R1195-205. PubMed ID: 23054171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anion size modulates salt taste in rats.
    Breza JM; Contreras RJ
    J Neurophysiol; 2012 Mar; 107(6):1632-48. PubMed ID: 22205652
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of chorda tympani nerve transection on salt taste perception in mice.
    Golden GJ; Ishiwatari Y; Theodorides ML; Bachmanov AA
    Chem Senses; 2011 Nov; 36(9):811-9. PubMed ID: 21743094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Citric acid and quinine share perceived chemosensory features making oral discrimination difficult in C57BL/6J mice.
    Treesukosol Y; Mathes CM; Spector AC
    Chem Senses; 2011 Jun; 36(5):477-89. PubMed ID: 21421543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dehydration followed by sham rehydration contributes to reduced neuronal activation in vasopressinergic supraoptic neurons after water deprivation.
    Knight WD; Ji LL; Little JT; Cunningham JT
    Am J Physiol Regul Integr Comp Physiol; 2010 Nov; 299(5):R1232-40. PubMed ID: 20844266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning-based recovery from perceptual impairment in salt discrimination after permanently altered peripheral gustatory input.
    Blonde G; Jiang E; Garcea M; Spector AC
    Am J Physiol Regul Integr Comp Physiol; 2010 Oct; 299(4):R1027-36. PubMed ID: 20554935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response latency to lingual taste stimulation distinguishes neuron types within the geniculate ganglion.
    Breza JM; Nikonov AA; Contreras RJ
    J Neurophysiol; 2010 Apr; 103(4):1771-84. PubMed ID: 20107132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rewiring the gustatory system: specificity between nerve and taste bud field is critical for normal salt discrimination.
    Spector AC; Blonde G; Garcea M; Jiang E
    Brain Res; 2010 Jan; 1310():46-57. PubMed ID: 19941834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bitter-responsive gustatory neurons in the rat parabrachial nucleus.
    Geran LC; Travers SP
    J Neurophysiol; 2009 Mar; 101(3):1598-612. PubMed ID: 19129294
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transsynaptic transport of wheat germ agglutinin expressed in a subset of type II taste cells of transgenic mice.
    Damak S; Mosinger B; Margolskee RF
    BMC Neurosci; 2008 Oct; 9():96. PubMed ID: 18831764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cracking taste codes by tapping into sensory neuron impulse traffic.
    Frank ME; Lundy RF; Contreras RJ
    Prog Neurobiol; 2008 Nov; 86(3):245-63. PubMed ID: 18824076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse.
    Kataoka S; Yang R; Ishimaru Y; Matsunami H; Sévigny J; Kinnamon JC; Finger TE
    Chem Senses; 2008 Mar; 33(3):243-54. PubMed ID: 18156604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Richter and sodium appetite: from adrenalectomy to molecular biology.
    Krause EG; Sakai RR
    Appetite; 2007 Sep; 49(2):353-67. PubMed ID: 17561308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo recordings from rat geniculate ganglia: taste response properties of individual greater superficial petrosal and chorda tympani neurones.
    Sollars SI; Hill DL
    J Physiol; 2005 May; 564(Pt 3):877-93. PubMed ID: 15746166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant.
    Lyall V; Heck GL; Vinnikova AK; Ghosh S; Phan TH; Alam RI; Russell OF; Malik SA; Bigbee JW; DeSimone JA
    J Physiol; 2004 Jul; 558(Pt 1):147-59. PubMed ID: 15146042
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic coding of taste stimuli in the brainstem: effects of brief pulses of taste stimuli on subsequent taste responses.
    Di Lorenzo PM; Lemon CH; Reich CG
    J Neurosci; 2003 Oct; 23(26):8893-902. PubMed ID: 14523091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the responses of the chorda tympani and glossopharyngeal nerves to taste stimuli in C57BL/6J mice.
    Danilova V; Hellekant G
    BMC Neurosci; 2003 Mar; 4():5. PubMed ID: 12617752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of rat chorda tympani NaCl responses and intracellular Na+ activity in polarized taste receptor cells by pH.
    Lyall V; Alam RI; Phan TH; Russell OF; Malik SA; Heck GL; DeSimone JA
    J Gen Physiol; 2002 Dec; 120(6):793-815. PubMed ID: 12451050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.