These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Switching of the dominant calcium sequestering protein during skeletal muscle differentiation. Koyabu S; Imanaka-Yoshida K; Ioshii SO; Nakano T; Yoshida T Cell Motil Cytoskeleton; 1994; 29(3):259-70. PubMed ID: 7895290 [TBL] [Abstract][Full Text] [Related]
27. [Interrelations of cyclic adenosine monophosphate and calcium in regulating glycogen synthetase in developing skeletal and cardiac muscles in chickens]. Kuznetsova LA Ontogenez; 1977; 8(5):532-7. PubMed ID: 198718 [TBL] [Abstract][Full Text] [Related]
28. Evidence for intraluminal Ca++ regulatory site defect in sarcoplasmic reticulum from malignant hyperthermia pig muscle. Nelson TE; Lin M; Volpe P J Pharmacol Exp Ther; 1991 Feb; 256(2):645-9. PubMed ID: 1847206 [TBL] [Abstract][Full Text] [Related]
29. Comparison of Ca++ uptake and spontaneous Ca++ release from sarcoplasmic reticulum vesicles isolated from muscle of malignant hyperthermia diagnostic patients. Nelson TE; Flewellen EH; Belt MW; Kennamer DL; Winsett OE J Pharmacol Exp Ther; 1987 Mar; 240(3):785-8. PubMed ID: 3559973 [TBL] [Abstract][Full Text] [Related]
30. [Dynamics of the state of the calcium pump of the skeletal muscle sarcoplasmic reticulum in rabbit ontogenesis]. Meerson FZ; Panchenko LF; Aliev MK Zh Evol Biokhim Fiziol; 1974; 10(5):462-7. PubMed ID: 4280220 [No Abstract] [Full Text] [Related]
31. Comparison of [3H]ryanodine receptors and Ca++ release from rat cardiac and rabbit skeletal muscle sarcoplasmic reticulum. Zimányi I; Pessah IN J Pharmacol Exp Ther; 1991 Mar; 256(3):938-46. PubMed ID: 1848635 [TBL] [Abstract][Full Text] [Related]
32. Development of the iris in the chicken embryo. I. A study of growth and histodifferentiation utilizing immunocytochemistry for muscle differentiation. Ferrari PA; Koch WE J Embryol Exp Morphol; 1984 Jun; 81():153-67. PubMed ID: 6381630 [TBL] [Abstract][Full Text] [Related]
33. The sarcoplasmic reticulum: an organized patchwork of specialized domains. Rossi D; Barone V; Giacomello E; Cusimano V; Sorrentino V Traffic; 2008 Jul; 9(7):1044-9. PubMed ID: 18266914 [TBL] [Abstract][Full Text] [Related]
34. Localization of the Ca(2+)-binding S100A1 protein in slow and fast skeletal muscles of the rat. Maco B; Brezová A; Schäfer BW; Uhrík B; Heizmann CW Gen Physiol Biophys; 1997 Dec; 16(4):373-7. PubMed ID: 9595305 [TBL] [Abstract][Full Text] [Related]
35. Purification and ultrastructural properties of the calcium accumulating membranes in isolated sarcoplasmic reticulum preparations from skeletal muscle. Greaser ML; Cassens RG; Hoekstra WG; Briskey EJ J Cell Physiol; 1969 Aug; 74(1):37-50. PubMed ID: 4184016 [No Abstract] [Full Text] [Related]
36. Localization of calcium in skeletal and cardiac muscle. Borgers M; Thone F; Verheyen A; Ter Keurs HE Histochem J; 1984 Mar; 16(3):295-309. PubMed ID: 6698809 [TBL] [Abstract][Full Text] [Related]
37. An electron microscopic study of myofilament calcium binding sites in native, EGTA-chelated and calcium reloaded glycerolated mammalian skeletal muscle. Davis WL; Matthews JL; Martin JH Calcif Tissue Res; 1974; 14(2):139-52. PubMed ID: 4132183 [No Abstract] [Full Text] [Related]
38. INTRACELLULAR DISTRIBUTION OF CALCIUM IN DEVELOPING BREAST MUSCLE OF NORMAL AND DYSTROPHIC CHICKENS. COSMOS E J Cell Biol; 1964 Nov; 23(2):241-52. PubMed ID: 14222812 [TBL] [Abstract][Full Text] [Related]
39. Ultrastructural cation precipitation in frog skeletal muscle. I. Localization of pyroantimonate precipitate at rest and in tetanus. Yarom R; Meiri U J Ultrastruct Res; 1972 Jun; 39(5):430-42. PubMed ID: 4556319 [No Abstract] [Full Text] [Related]
40. On the criteria for characterization of calcium oxalate in sarcoplasmic reticulum fragments. Mussini I; Margreth A; Salviati G J Ultrastruct Res; 1972 Mar; 38(5):459-65. PubMed ID: 4111069 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]