These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6632835)

  • 1. A finite element model of burn injury in blood-perfused skin.
    Diller KR; Hayes LJ
    J Biomech Eng; 1983 Aug; 105(3):300-7. PubMed ID: 6632835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boundary element method with bioheat equation for skin burn injury.
    Ng EY; Tan HM; Ooi EH
    Burns; 2009 Nov; 35(7):987-97. PubMed ID: 19427127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element model of skin subjected to a flash fire.
    Torvi DA; Dale JD
    J Biomech Eng; 1994 Aug; 116(3):250-5. PubMed ID: 7799624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of skin burn injury. Part 2: Parametric and sensitivity analysis.
    Ng EY; Chua LT
    Proc Inst Mech Eng H; 2002; 216(3):171-83. PubMed ID: 12137284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of thermal properties and geometrical dimensions on skin burn injuries.
    Jiang SC; Ma N; Li HJ; Zhang XX
    Burns; 2002 Dec; 28(8):713-7. PubMed ID: 12464468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesh-independent prediction of skin burns injury.
    Ng EY; Chua LT
    J Med Eng Technol; 2000; 24(6):255-61. PubMed ID: 11315652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to cool a burn: a heat transfer point of view.
    Baldwin A; Xu J; Attinger D
    J Burn Care Res; 2012; 33(2):176-87. PubMed ID: 22210055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of skin burn injury. Part 1: Numerical modelling.
    Ng EY; Chua LT
    Proc Inst Mech Eng H; 2002; 216(3):157-70. PubMed ID: 12137283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skin biothermomechanics for medical treatments.
    Xu F; Wen T; Lu TJ; Seffen KA
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):172-87. PubMed ID: 19627782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission line matrix modelling of thermal injuries to skin.
    Aliouat Bellia S; Saidane A; Hamou A; Benzohra M; Saiter JM
    Burns; 2008 Aug; 34(5):688-97. PubMed ID: 18321649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite-element model predicts thermal damage in cutaneous contact burns.
    Orgill DP; Solari MG; Barlow MS; O'Connor NE
    J Burn Care Rehabil; 1998; 19(3):203-9. PubMed ID: 9622462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D finite element model for hyperthermia injury of blood-perfused skin.
    Ratovoson D; Huon V; Jourdan F
    Comput Methods Biomech Biomed Engin; 2015; 18(3):233-42. PubMed ID: 23768152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of skin burn injury. Part 1: numerical modelling; part 2: parametric and sensitivity analysis.
    Lawton B; Laird MP
    Proc Inst Mech Eng H; 2002; 216(6):425-6; discussion 426-7. PubMed ID: 12502007
    [No Abstract]   [Full Text] [Related]  

  • 14. A review of the evidence for threshold of burn injury.
    Martin NA; Falder S
    Burns; 2017 Dec; 43(8):1624-1639. PubMed ID: 28536038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The uncertainty in burn prediction as a result of variable skin parameters: an experimental evaluation of burn-protective outfits.
    Gasperin M; Juricić D
    Burns; 2009 Nov; 35(7):970-82. PubMed ID: 19446961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of experimentally created partial-thickness human skin burns and subsequent therapeutic cooling: a new measure for cooling effectiveness.
    Van de Sompel D; Kong TY; Ventikos Y
    Med Eng Phys; 2009 Jul; 31(6):624-31. PubMed ID: 19124267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of one- and two-dimensional programmes for predicting the state of skin burns.
    Ng EY; Chua LT
    Burns; 2002 Feb; 28(1):27-34. PubMed ID: 11834326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical simulation of heat transfer process in skin cover at burn injury.
    Enalejev RS; Kachalkin WA
    Ann N Y Acad Sci; 1998 Sep; 858():30-5. PubMed ID: 9917804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human skin burns induced by defibrillator default current: a mathematical simulation model.
    Yoo JH; White TJ; Stoner DL
    Int J Biomed Comput; 1977 Apr; 8(2):109-30. PubMed ID: 863538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro burn model illustrating heat conduction patterns using compressed thermal papers.
    Lee JY; Jung SN; Kwon H
    Wound Repair Regen; 2015; 23(1):124-31. PubMed ID: 25421614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.