These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6632838)

  • 1. An optimal linear filter for the reduction of noise superimposed to the EEG signal.
    Bartoli F; Cerutti S
    J Biomed Eng; 1983 Oct; 5(4):274-80. PubMed ID: 6632838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of finite wordlength FIR digital filter structures with improved magnitude and phase characteristics for reduction of muscle noise in EEG signals.
    Sadasivan PK; Dutt DN
    Med Biol Eng Comput; 1995 May; 33(3):306-12. PubMed ID: 7475367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A statistical Wiener filter using complex analysis of variance.
    Woestenburg JC; Verbaten MN; Sjouw WP; Slangen JL
    Biol Psychol; 1981 Dec; 13():215-25. PubMed ID: 7342991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blind noise reduction for multisensory signals using ICA and subspace filtering, with application to EEG analysis.
    Vorobyov S; Cichocki A
    Biol Cybern; 2002 Apr; 86(4):293-303. PubMed ID: 11956810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital filter design for electrophysiological data--a practical approach.
    Widmann A; Schröger E; Maess B
    J Neurosci Methods; 2015 Jul; 250():34-46. PubMed ID: 25128257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral estimation of EEG signals using cascaded inverse filters.
    Dutt DN
    Int J Biomed Comput; 1994 Aug; 36(4):251-6. PubMed ID: 8002102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital filtering of on-line evoked potentials.
    Ackmann JJ; Elko PP; Wu SJ
    Int J Biomed Comput; 1979 Aug; 10(4):291-303. PubMed ID: 489157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving liquid chromatography-tandem mass spectrometry determinations by modifying noise frequency spectrum between two consecutive wavelet-based low-pass filtering procedures.
    Chen HP; Liao HJ; Huang CM; Wang SC; Yu SN
    J Chromatogr A; 2010 Apr; 1217(17):2804-11. PubMed ID: 20227706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular circuits for dynamic noise filtering.
    Zechner C; Seelig G; Rullan M; Khammash M
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4729-34. PubMed ID: 27078094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Off-line removal of TMS-induced artifacts on human electroencephalography by Kalman filter.
    Morbidi F; Garulli A; Prattichizzo D; Rizzo C; Manganotti P; Rossi S
    J Neurosci Methods; 2007 May; 162(1-2):293-302. PubMed ID: 17399798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of the EEG during neurosurgery. Parametric identification and Kalman filtering compared.
    Cerutti S; Liberati D; Avanzini G; Franceschetti S; Panzica F
    J Biomed Eng; 1986 Jul; 8(3):244-54. PubMed ID: 3724129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filtering and thresholding the analytic signal envelope in order to improve peak and spike noise reduction in EEG signals.
    Melia U; Clariá F; Vallverdú M; Caminal P
    Med Eng Phys; 2014 Apr; 36(4):547-53. PubMed ID: 24365255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple algorithm for a digital three-pole Butterworth filter of arbitrary cut-off frequency: application to digital electroencephalography.
    Alarcon G; Guy CN; Binnie CD
    J Neurosci Methods; 2000 Dec; 104(1):35-44. PubMed ID: 11163409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal digital filters for analyzing the mid-latency auditory P50 event-related potential in patients with Alzheimer's disease.
    Liljander S; Holm A; Keski-Säntti P; Partanen JV
    J Neurosci Methods; 2016 Jun; 266():50-67. PubMed ID: 27015794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed signal EEG trigger.
    Gergely S; Paul R
    Biomed Eng; 1975 Mar; 10(3):105-7. PubMed ID: 1125355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the performance of Kalman-filter-based EEG source localization.
    Barton MJ; Robinson PA; Kumar S; Galka A; Durrant-Whyte HF; Guivant J; Ozaki T
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):122-36. PubMed ID: 19224726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HOKF: High Order Kalman Filter for Epilepsy Forecasting Modeling.
    Nguyen NAT; Yang HJ; Kim S
    Biosystems; 2017 Aug; 158():57-67. PubMed ID: 28571930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal digital filters for long-latency components of the event-related brain potential.
    Farwell LA; Martinerie JM; Bashore TR; Rapp PE; Goddard PH
    Psychophysiology; 1993 May; 30(3):306-15. PubMed ID: 8497560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory and implementation of infomax filters for the retina.
    Haft M; van Hemmen JL
    Network; 1998 Feb; 9(1):39-71. PubMed ID: 9861978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods.
    Rajabioun M; Nasrabadi AM; Shamsollahi MB
    Australas Phys Eng Sci Med; 2017 Sep; 40(3):675-686. PubMed ID: 28852979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.