These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 6633167)

  • 1. A comparison of the oleaginous yeast, Candida curvata, grown on different carbon sources in continuous and batch culture.
    Evans CT; Ratledge C
    Lipids; 1983 Sep; 18(9):623-9. PubMed ID: 6633167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose in single-stage continuous culture.
    Gill CO; Hall MJ; Ratledge C
    Appl Environ Microbiol; 1977 Feb; 33(2):231-9. PubMed ID: 848947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates.
    Wiebe MG; Koivuranta K; Penttilä M; Ruohonen L
    BMC Biotechnol; 2012 May; 12():26. PubMed ID: 22646156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical activities during lipid accumulation in Candida curvata.
    Evans CT; Ratledge C
    Lipids; 1983 Sep; 18(9):630-5. PubMed ID: 6633168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candida zeylanoides as a new yeast model for lipid metabolism studies: effect of nitrogen sources on fatty acid accumulation.
    da Rosa PD; Mattanna P; Carboni D; Amorim L; Richards N; Valente P
    Folia Microbiol (Praha); 2014 Nov; 59(6):477-84. PubMed ID: 24879093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modelling of lipid production by oleaginous yeasts in continuous cultures.
    Ykema A; Verbree EC; van Verseveld HW; Smit H
    Antonie Van Leeuwenhoek; 1986; 52(6):491-506. PubMed ID: 3813522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of dilution rate and carbon-to-nitrogen ratio on lipid accumulation by Rhodosporidium toruloides under chemostat conditions].
    Shen H; Jin G; Hu C; Gong Z; Bai F; Zhao ZK
    Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):56-64. PubMed ID: 22667109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of feeding strategies on lipid production by Lipomyces starkeyi.
    Anschau A; Xavier MC; Hernalsteens S; Franco TT
    Bioresour Technol; 2014 Apr; 157():214-22. PubMed ID: 24556374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of specific growth rate on biomass yield, productivity, and compostion of Candida utilis in batch and continuous culture.
    Paredes-López O; Camargo-Rubio E; Ornelas-Vale A
    Appl Environ Microbiol; 1976 Apr; 31(4):487-91. PubMed ID: 5055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios.
    Park WS; Murphy PA; Glatz BA
    Can J Microbiol; 1990 May; 36(5):318-26. PubMed ID: 2390744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of temperature variation on the fatty acid composition of Candida utilis.
    McMurrough I; Rose AH
    J Bacteriol; 1971 Sep; 107(3):753-8. PubMed ID: 5095287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of lipid composition of Candida guilliermondii grown on glucose, ethanol and methanol as the sole carbon source.
    Jigami Y; Suzuki O; Nakasato S
    Lipids; 1979 Nov; 14(11):937-42. PubMed ID: 513982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of a novel isolate of Candida tropicalis for enhanced lipid production.
    Dey P; Maiti MK
    J Appl Microbiol; 2013 May; 114(5):1357-68. PubMed ID: 23311514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single cell oil production from a newly isolated Candida viswanathii Y-E4 and agro-industrial by-products valorization.
    Ayadi I; Kamoun O; Trigui-Lahiani H; Hdiji A; Gargouri A; Belghith H; Guerfali M
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):901-14. PubMed ID: 27114386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid production by yeasts grown on crude glycerol from biodiesel industry.
    Souza KS; Ramos CL; Schwan RF; Dias DR
    Prep Biochem Biotechnol; 2017 Apr; 47(4):357-363. PubMed ID: 27737603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.
    Liu J; Liu JN; Yuan M; Shen ZH; Peng KM; Lu LJ; Huang XF
    Bioresour Technol; 2016 Jul; 211():548-55. PubMed ID: 27038264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures.
    Papanikolaou S; Chevalot I; Komaitis M; Marc I; Aggelis G
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):308-12. PubMed ID: 11935181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids.
    Wang Y; Rischer H; Eriksen NT; Wiebe MG
    Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed-batch cultivation.
    Brandenburg J; Blomqvist J; Pickova J; Bonturi N; Sandgren M; Passoth V
    Yeast; 2016 Aug; 33(8):451-62. PubMed ID: 26945827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth characteristics of Candida utilis on volatile substrate in a multistage tower fermentor.
    Páca J; Grégr V
    Biotechnol Bioeng; 1977 Apr; 19(4):539-54. PubMed ID: 15674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.