These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6633788)

  • 1. High affinity uptake of GABA and glycine by rabbits with aluminum-induced neurofibrillary changes.
    Sturman JA; Wisniewski HM; Shek JW
    Neurochem Res; 1983 Sep; 8(9):1097-109. PubMed ID: 6633788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aluminum chloride induced neurofibrillary changes in the developing rabbit a chronic animal model.
    Wisniewski HM; Sturman JA; Shek JW
    Ann Neurol; 1980 Nov; 8(5):479-90. PubMed ID: 7192069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of gamma-aminobutyric acid and glycine by synaptosomes from postmortem human brain.
    Hardy JA; Barton A; Lofdahl E; Cheetham SC; Johnston GA; Dodd PR
    J Neurochem; 1986 Aug; 47(2):460-7. PubMed ID: 3734788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pressure on the release of radioactive glycine and gamma-aminobutyric acid from spinal cord synaptosomes.
    Gilman SC; Colton JS; Dutka AJ
    J Neurochem; 1987 Nov; 49(5):1571-8. PubMed ID: 3668541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic model of neurofibrillary changes induced in mature rabbits by metallic aluminum.
    Wisniewski HM; Sturman JA; Shek JW
    Neurobiol Aging; 1982; 3(1):11-22. PubMed ID: 7099362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-affinity transport of gamma-aminobutyric acid, glycine, taurine, L-aspartic acid, and L-glutamic acid in synaptosomal (P2) tissue: a kinetic and substrate specificity analysis.
    Debler EA; Lajtha A
    J Neurochem; 1987 Jun; 48(6):1851-6. PubMed ID: 2883259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of glycine, GABA and glutamate by synaptic vesicles isolated from different regions of rat CNS.
    Christensen H; Fonnum F
    Neurosci Lett; 1991 Aug; 129(2):217-20. PubMed ID: 1684027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intranuclear aluminum accumulation in chronic animals with experimental neurofibrillary changes.
    Uemura E
    Exp Neurol; 1984 Jul; 85(1):10-8. PubMed ID: 6734771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurofibrillary spheroids induced by aluminum phosphate in dorsal root ganglia neurons in vitro.
    Seil FJ; Lampert PW; Klatzo I
    J Neuropathol Exp Neurol; 1969 Jan; 28(1):74-85. PubMed ID: 4885719
    [No Abstract]   [Full Text] [Related]  

  • 10. Synaptic and nonsynaptic determinants of excitability changes in aluminum-intoxicated rabbit CA1 pyramidal neurons studied in vitro.
    Franceschetti S; Bugiani O; Panzica F; Avanzini G
    Epilepsy Res Suppl; 1992; 8():313-20. PubMed ID: 1358102
    [No Abstract]   [Full Text] [Related]  

  • 11. Synaptosomal transport: a chloride dependence for choline, GABA, glycine and several other compounds.
    Kuhar MJ; Zarbin MA
    J Neurochem; 1978 Jul; 31(1):251-6. PubMed ID: 27588
    [No Abstract]   [Full Text] [Related]  

  • 12. Immunochemical cross-reactivity of normal neurofibrils and aluminum-induced neurofibrillary tangles. Immunofluorescence study with antineurofilament serum.
    Dahl D; Bignami A
    Exp Neurol; 1978 Jan; 58(1):74-80. PubMed ID: 338332
    [No Abstract]   [Full Text] [Related]  

  • 13. Aluminum-induced neurofibrillary changes in axons and dendrites.
    Wisniewski HM; Shek JW; Gruca S; Sturman JA
    Acta Neuropathol; 1984; 63(3):190-7. PubMed ID: 6464675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. gamma-Aminobutyric acid and glycine modulate each other's release through heterocarriers sited on the releasing axon terminals of rat CNS.
    Raiteri M; Bonanno G; Pende M
    J Neurochem; 1992 Oct; 59(4):1481-9. PubMed ID: 1402899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active transport of gamma-aminobutyric acid and glycine into synaptic vesicles.
    Kish PE; Fischer-Bovenkerk C; Ueda T
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3877-81. PubMed ID: 2566998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurochemical characteristics of aluminum-induced neurofibrillary degeneration in rabbits.
    Beal MF; Mazurek MF; Ellison DW; Kowall NW; Solomon PR; Pendlebury WW
    Neuroscience; 1989; 29(2):339-46. PubMed ID: 2566953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in neurotransmitter uptake in the spinal cord following peripheral nerve injury.
    Somps CJ; Boyajian CL; Luttges MW
    Synapse; 1988; 2(2):109-16. PubMed ID: 2901793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of spinal cord nerve endings containing various neurotransmitters on a continuous density gradient.
    Bucsics A; Mayer N; Pabst MA; Lembeck F
    J Neurochem; 1984 Mar; 42(3):692-7. PubMed ID: 6198468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning deficit in immature rabbits with aluminum-induced neurofibrillary changes.
    Rabe A; Lee MH; Shek J; Wisniewski HM
    Exp Neurol; 1982 May; 76(2):441-6. PubMed ID: 6896495
    [No Abstract]   [Full Text] [Related]  

  • 20. [Experimental neurofibrillary change induced by aluminum lactate].
    Mori H; Nakamura H; Wakuani K
    Shinkei Kenkyu No Shimpo; 1969 Jun; 13(2):279-90. PubMed ID: 5390674
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.