These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 6633870)

  • 1. Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line-sampling.
    Blight AR
    Neuroscience; 1983 Oct; 10(2):521-43. PubMed ID: 6633870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphometric analysis of experimental spinal cord injury in the cat: the relation of injury intensity to survival of myelinated axons.
    Blight AR; Decrescito V
    Neuroscience; 1986 Sep; 19(1):321-41. PubMed ID: 3785669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord.
    Nashmi R; Fehlings MG
    Neuroscience; 2001; 104(1):235-51. PubMed ID: 11311546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of acute axonal pathology in experimental spinal cord contusion.
    Rosenberg LJ; Wrathall JR
    J Neurotrauma; 1997 Nov; 14(11):823-38. PubMed ID: 9421454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electron-microscopic analysis of axonal alterations following blunt contusion of the spinal cord of the rhesus monkey (Macaca mulatta).
    Bresnahan JC
    J Neurol Sci; 1978 Jun; 37(1-2):59-82. PubMed ID: 99494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central axons in injured cat spinal cord recover electrophysiological function following remyelination by Schwann cells.
    Blight AR; Young W
    J Neurol Sci; 1989 Jun; 91(1-2):15-34. PubMed ID: 2746287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous long-term remyelination after traumatic spinal cord injury in rats.
    Salgado-Ceballos H; Guizar-Sahagun G; Feria-Velasco A; Grijalva I; Espitia L; Ibarra A; Madrazo I
    Brain Res; 1998 Jan; 782(1-2):126-35. PubMed ID: 9519256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury.
    Blight AR
    Cent Nerv Syst Trauma; 1985; 2(4):299-315. PubMed ID: 3836014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A controlled spinal cord contusion for the rhesus macaque monkey.
    Ma Z; Zhang YP; Liu W; Yan G; Li Y; Shields LBE; Walker M; Chen K; Huang W; Kong M; Lu Y; Brommer B; Chen X; Xu XM; Shields CB
    Exp Neurol; 2016 May; 279():261-273. PubMed ID: 26875994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphometric analysis of blood vessels in chronic experimental spinal cord injury: hypervascularity and recovery of function.
    Blight AR
    J Neurol Sci; 1991 Dec; 106(2):158-74. PubMed ID: 1802964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of silica on the outcome from experimental spinal cord injury: implication of macrophages in secondary tissue damage.
    Blight AR
    Neuroscience; 1994 May; 60(1):263-73. PubMed ID: 8052418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal physiology of chronic spinal cord injury in the cat: intracellular recording in vitro.
    Blight AR
    Neuroscience; 1983 Dec; 10(4):1471-86. PubMed ID: 6664497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of myelination on axon sparing and locomotor function recovery in spinal cord injury assessed using diffusion tensor imaging.
    Tu TW; Kim JH; Yin FQ; Jakeman LB; Song SK
    NMR Biomed; 2013 Nov; 26(11):1484-95. PubMed ID: 23775778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury.
    Stirling DP; Cummins K; Mishra M; Teo W; Yong VW; Stys P
    Brain; 2014 Mar; 137(Pt 3):707-23. PubMed ID: 24369381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury.
    Fehlings MG; Tator CH
    Exp Neurol; 1995 Apr; 132(2):220-8. PubMed ID: 7789460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron microscopic observations of the mechanisms of terminal club formation in transected spinal cord axons.
    Kao CC; Chang LW; Bloodworth JM
    J Neuropathol Exp Neurol; 1977 Jan; 36(1):140-56. PubMed ID: 64594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathological changes in the white matter after spinal contusion injury in the rat.
    Ek CJ; Habgood MD; Dennis R; Dziegielewska KM; Mallard C; Wheaton B; Saunders NR
    PLoS One; 2012; 7(8):e43484. PubMed ID: 22952690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.
    Okada SL; Stivers NS; Stys PK; Stirling DP
    J Vis Exp; 2014 Nov; (93):e52173. PubMed ID: 25490396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myelination of axons emerging from neural progenitor grafts after spinal cord injury.
    Hunt M; Lu P; Tuszynski MH
    Exp Neurol; 2017 Oct; 296():69-73. PubMed ID: 28698030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of spinal cord trauma on myelin.
    Banik NL; Powers JM; Hogan EL
    J Neuropathol Exp Neurol; 1980 May; 39(3):232-44. PubMed ID: 6245191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.