These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 6636176)

  • 1. Mechanism of chloroform nephrotoxicity. II. In vitro evidence for renal metabolism of chloroform in mice.
    Smith JH; Hook JB
    Toxicol Appl Pharmacol; 1983 Sep; 70(3):480-5. PubMed ID: 6636176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of chloroform nephrotoxicity. I. Time course of chloroform toxicity in male and female mice.
    Smith JH; Maita K; Sleight SD; Hook JB
    Toxicol Appl Pharmacol; 1983 Sep; 70(3):467-79. PubMed ID: 6636175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of chloroform nephrotoxicity. IV. Phenobarbital potentiation of in vitro chloroform metabolism and toxicity in rabbit kidneys.
    Bailie MB; Smith JH; Newton JF; Hook JB
    Toxicol Appl Pharmacol; 1984 Jun; 74(2):285-92. PubMed ID: 6740677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of intrarenal biotransformation in chloroform-induced nephrotoxicity in rats.
    Smith JH; Hewitt WR; Hook JB
    Toxicol Appl Pharmacol; 1985 Jun; 79(1):166-74. PubMed ID: 4049404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nephrotoxicity and hepatotoxicity of chloroform in mice: effect of deuterium substitution.
    Ahmadizadeh M; Kuo CH; Hook JB
    J Toxicol Environ Health; 1981; 8(1-2):105-11. PubMed ID: 7328696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of chloroform nephrotoxicity. III. Renal and hepatic microsomal metabolism of chloroform in mice.
    Smith JH; Hook JB
    Toxicol Appl Pharmacol; 1984 May; 73(3):511-24. PubMed ID: 6719466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nephrotoxicity of chloroform: metabolism to phosgene by the mouse kidney.
    Branchflower RV; Nunn DS; Highet RJ; Smith JH; Hook JB; Pohl LR
    Toxicol Appl Pharmacol; 1984 Jan; 72(1):159-68. PubMed ID: 6143425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Buthionine sulfoximine (BSO) and N-(3,5-dichlorophenyl)succinimide nephrotoxicity: temporal aspects of BSO administration and BSO effects on renal transport systems.
    Rankin GO; Beers KW; Teets VJ; Nicoll DW; Anestis DK
    Toxicology; 1997 Feb; 117(2-3):207-17. PubMed ID: 9057900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cephaloridine nephrotoxicity: strain and sex differences in mice.
    Pasino DA; Miura K; Goldstein RS; Hook JB
    Fundam Appl Toxicol; 1985 Dec; 5(6 Pt 1):1153-60. PubMed ID: 4092877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute nephrotoxicity induced by isomeric dichloroanilines in Fischer 344 rats.
    Lo HH; Brown PI; Rankin GO
    Toxicology; 1990 Aug; 63(2):215-31. PubMed ID: 2399536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nephrotoxicity of N-(3-bromophenyl)-2-hydroxysuccinimide: role of halogen groups in the nephrotoxic potential of N-(halophenyl) succinimides.
    Hong SK; Anestis DK; Hawco NM; Valentovic MA; Brown PI; Rankin GO
    Toxicology; 1996 Jun; 110(1-3):17-25. PubMed ID: 8658556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissipation by tetraethylammonium of verapamil-stimulated p-aminohippurate accumulation in rat kidney cortical slices.
    Matsushima Y; Gemba M
    Biochem Pharmacol; 1983 Jun; 32(12):1929-31. PubMed ID: 6882468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain and sex differences in chloroform-induced nephrotoxicity. Different rates of metabolism of chloroform to phosgene by the mouse kidney.
    Pohl LR; George JW; Satoh H
    Drug Metab Dispos; 1984; 12(3):304-8. PubMed ID: 6145557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sex hormone status on chloroform nephrotoxicity and renal mixed function oxidases in mice.
    Smith JH; Maita K; Sleight SD; Hook JB
    Toxicology; 1984 Apr; 30(4):305-16. PubMed ID: 6729829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulative effect of Ba2+ on p-aminohippurate transport in rat kidney cortical slices.
    Gemba M; Murata M; Matsushima Y
    J Pharmacobiodyn; 1983 Oct; 6(10):760-6. PubMed ID: 6663443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of p-aminohippurate transport by cyclic GMP in rat kidney cortical slices.
    Gemba M; Kawaguchi M; Konishi S; Nakanishi J; Matsushima Y
    J Pharmacobiodyn; 1983 Sep; 6(9):621-6. PubMed ID: 6317836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxidative damage and nephrotoxicity of dichlorovinylcysteine in mice.
    Beuter W; Cojocel C; Müller W; Donaubauer HH; Mayer D
    J Appl Toxicol; 1989 Jun; 9(3):181-6. PubMed ID: 2745925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nephrotoxicity of phenolic bromobenzene metabolites in the mouse.
    Rush GF; Newton JF; Maita K; Kuo CH; Hook JB
    Toxicology; 1984 Apr; 30(3):259-72. PubMed ID: 6710548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3,5-Dichloroaniline-induced nephrotoxicity in the Sprague-Dawley rat.
    Rankin GO; Yang DJ; Teets VJ; Lo HH; Brown PI
    Toxicol Lett; 1986 Feb; 30(2):173-9. PubMed ID: 3705103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cyclosporine A on accumulation of tetraethylammonium and p-aminohippurate, and on lipid peroxidation in rat renal microsomes and cortical slices.
    Inselmann G; Baumann K
    Ren Fail; 1990; 12(3):165-9. PubMed ID: 2287768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.