BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 6636970)

  • 21. The pigmentary system of developing axolotls. II. An analysis of the melanoid phenotype.
    Frost SK; Epp LG; Robinson SJ
    J Embryol Exp Morphol; 1984 Jun; 81():127-42. PubMed ID: 6470606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and ultrastructural aspects of the skin of large yellow croaker Larimichthys crocea.
    Shi C; Chen SX
    J Fish Biol; 2024 Jun; 104(6):1836-1847. PubMed ID: 38488309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish.
    Mahalwar P; Walderich B; Singh AP; Nüsslein-Volhard C
    Science; 2014 Sep; 345(6202):1362-4. PubMed ID: 25214630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrastructure of the integumental melanophores of the coelacanth, Latimeria chalumnae.
    Lamer HI; Chavin W
    Cell Tissue Res; 1975 Nov; 163(3):383-94. PubMed ID: 1203955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids.
    Djurdjevič I; Kreft ME; Sušnik Bajec S
    J Anat; 2015 Nov; 227(5):583-95. PubMed ID: 26467239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adult-type pigment cells, which color the ocular sides of flounders at metamorphosis, localize as precursor cells at the proximal parts of the dorsal and anal fins in early larvae.
    Watanabe K; Washio Y; Fujinami Y; Aritaki M; Uji S; Suzuki T
    Dev Growth Differ; 2008 Dec; 50(9):731-41. PubMed ID: 19046161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response of the chromatophores in relation to the healing of skin wounds in an Indian Major Carp, Labeo rohita (Hamilton).
    Rai AK; Srivastava N; Nigam AK; Kumari U; Mittal S; Mittal AK
    Tissue Cell; 2012 Jun; 44(3):143-50. PubMed ID: 22321648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the colour-change mechanism in a fresh-water teleost, Nandus nandus (Ham.). I. Neural control.
    Jain AK; Bhargava HN
    J Neural Transm; 1979; 44(1-2):51-63. PubMed ID: 438803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the pituitary gland in adaption of the fish Tilapia mossambica (Peters) to contrasting backgrounds.
    Latey AN; Rangneker PV
    Endokrinologie; 1982 Jul; 79(3):406-14. PubMed ID: 7128553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of pigment pattern formation in the zebrafish, Brachydanio rerio. III. Effect of anteroposterior location of three-day lateral line melanophores on colonization by the second wave of melanophores.
    Milos N; Dingle AD; Milos JP
    J Exp Zool; 1983 Jul; 227(1):81-92. PubMed ID: 6619768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melanophore differentiation in Xenopus laevis, with special reference to dorsoventral pigment pattern formation.
    Ohsugi K; Ide H
    J Embryol Exp Morphol; 1983 Jun; 75():141-50. PubMed ID: 6411851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphological studies on the mechanisms of pigmentary organelle transport in fish xanthophores and melanophores.
    Kimler VA; Taylor JD
    Microsc Res Tech; 2002 Sep; 58(6):470-80. PubMed ID: 12242704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperpigmented patches in the skin of the newt Notophthalmus viridescens.
    Forbes MS; Dent JN; Zaccaria RA; Singhas CA
    Tissue Cell; 1981; 13(2):403-11. PubMed ID: 7314076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the color-change mechanism in a fresh-water teleost, Nandus nandus (Ham.). II. Hormonal control.
    Jain AK; Bhargava HN
    Neuroendocrinology; 1978; 26(5):261-9. PubMed ID: 683473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Apoptosis in skin pigment cells of the medaka, Oryzias latipes (Teleostei), during long-term chromatic adaptation: the role of sympathetic innervation.
    Sugimoto M; Uchida N; Hatayama M
    Cell Tissue Res; 2000 Aug; 301(2):205-16. PubMed ID: 10955716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Specific features of the melanophore system in different color morphs of larvae of the common toad (Bufo bufo L.)].
    Zakharova LA; Surova GS; Timofeev KN
    Izv Akad Nauk Ser Biol; 2012; (4):373-82. PubMed ID: 22988753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Melanophores in the stripes of adult zebrafish do not have the nature to gather, but disperse when they have the space to move.
    Takahashi G; Kondo S
    Pigment Cell Melanoma Res; 2008 Dec; 21(6):677-86. PubMed ID: 19067972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Ultrastructural changes in dermal melanophores in the process of pigment granule migration].
    Nikeriasova EN; Golichenikov VA
    Tsitologiia; 1983 Aug; 25(8):972-6. PubMed ID: 6356535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Seasonal variations in the pharyngeal and pronephric thyroid tissues of the fresh water teleost Puntius sophore (Ham).
    Agrawala N; Dixit RK
    Z Mikrosk Anat Forsch; 1979; 93(1):138-46. PubMed ID: 473855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two morphological types of pineal window in catfish in relation to photophase and scotophase activity: a morphological and experimental study.
    Srivastava S
    J Exp Zool A Comp Exp Biol; 2003 Jan; 295(1):17-28. PubMed ID: 12506400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.