These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6637300)

  • 1. DNA concentrations in the human cerebellum. Computation from kinetics of deoxyribose extraction in hot acid.
    Slatkin DN; Løvtrup S
    Acta Chem Scand B; 1983; 37(4):281-7. PubMed ID: 6637300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA content of mouse cerebellar layers.
    Maker HS; Lehrer GM; Weiss C
    Brain Res; 1973 Feb; 50(1):226-9. PubMed ID: 4690550
    [No Abstract]   [Full Text] [Related]  

  • 3. DNA constancy in neurons of the human cerebellum and spinal cord as revealed by Feulgen cytophotometry and cytofluorometry.
    Fujita S
    J Comp Neurol; 1974 May; 155(2):195-202. PubMed ID: 4827010
    [No Abstract]   [Full Text] [Related]  

  • 4. Elimination of 2-deoxyribose interference in the thiobarbituric acid determination of N-acetylneuraminic acid in tumor cells by pH-dependent extraction with cyclohexanone.
    Roboz J; Suttajit M; Bekesi JG
    Anal Biochem; 1981 Jan; 110(2):380-8. PubMed ID: 7235225
    [No Abstract]   [Full Text] [Related]  

  • 5. Deoxyribose degradation catalyzed by Fe(III)-EDTA: kinetic aspects and potential usefulness for submicromolar iron measurements.
    Hermes-Lima M; Wang EM; Schulman HM; Storey KB; Ponka P
    Mol Cell Biochem; 1994 Aug; 137(1):65-73. PubMed ID: 7845380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of 3'-phosphoglycolaldehyde residues in oxidized DNA by gas chromatography/negative chemical ionization/mass spectrometry.
    Collins C; Awada MM; Zhou X; Dedon PC
    Chem Res Toxicol; 2003 Dec; 16(12):1560-6. PubMed ID: 14680370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large regional and strain differences in rat brain sialic acid and 2-deoxyribose.
    Engen RL; Klemm WR
    Experientia; 1978 Mar; 34(3):368-70. PubMed ID: 631269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors that influence the deoxyribose oxidation assay for Fenton reaction products.
    Winterbourn CC
    Free Radic Biol Med; 1991; 11(4):353-60. PubMed ID: 1665835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the competitive degradation of deoxyribose and other molecules by hydroxyl radicals produced by the Fenton reaction in the presence of ascorbic acid.
    Zhao MJ; Jung L
    Free Radic Res; 1995 Sep; 23(3):229-43. PubMed ID: 7581818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemical production of hydroxyl radical from aqueous iron(III)-hydroxy complex: determination of its reaction rate constants with some substituted benzenes using deoxyribose-thiobartituric acid assay.
    Joseph JM; Luke TL; Aravind UK; Aravindakumar CT
    Water Environ Res; 2001; 73(2):243-7. PubMed ID: 11563385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The content of amino acids in the developing cerebellar cortex and deep cerebellar nuclei of granule cell deficient mutant mice.
    Roffler-Tarlov S; Turey M
    Brain Res; 1982 Sep; 247(1):65-73. PubMed ID: 6127146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-binding protein in the developing rat cerebellum. An immunocytochemical study.
    Legrand C; Thomasset M; Parkes CO; Clavel MC; Rabié A
    Cell Tissue Res; 1983; 233(2):389-402. PubMed ID: 6352043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebellar deoxyribonucleases and DNA in the androgenized female rat.
    Litteria M
    Neurochem Res; 1985 Apr; 10(4):571-7. PubMed ID: 4000400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential immunocytochemical localisation of alpha-tubulin and beta-tubulin in cerebellum using monoclonal antibodies.
    Cumming R; Burgoyne RD; Lytton NA
    Cell Biol Int Rep; 1982 Nov; 6(11):1047-53. PubMed ID: 6756648
    [No Abstract]   [Full Text] [Related]  

  • 15. Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA.
    Ozdemir A; Gursaclı RT; Tekinay T
    Biol Trace Elem Res; 2014 May; 158(2):268-74. PubMed ID: 24652629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the competitive degradation of deoxyribose and other biomolecules by hydroxyl radicals produced by the Fenton reaction.
    Zaho MJ; Jung L; Tanielian C; Mechin R
    Free Radic Res; 1994 Jun; 20(6):345-63. PubMed ID: 8081451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals.
    Halliwell B; Gutteridge JM; Aruoma OI
    Anal Biochem; 1987 Aug; 165(1):215-9. PubMed ID: 3120621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative cytochemical study of the DNA content of neurons of rat cerebellar cortex.
    Lentz RD; Lapham LW
    J Neurochem; 1969 Mar; 16(3):379-84. PubMed ID: 5795589
    [No Abstract]   [Full Text] [Related]  

  • 19. Transmitter biochemistry and histochemistry of the hypoplastic cerebellum in mice after neonatal administration of cytosine arabinoside.
    Tsuji M; Satoh K; Iwase N; Tanaka S; Takahasi S
    Brain Res Bull; 1984 Jan; 12(1):33-41. PubMed ID: 6201241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherence transfer in deoxyribose sugars produced by isotropic mixing: an improved intraresidue assignment strategy for the two-dimensional NMR spectra of DNA.
    Flynn PF; Kintanar A; Reid BR; Drobny G
    Biochemistry; 1988 Feb; 27(4):1191-7. PubMed ID: 3365381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.