These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 6639)
61. Guanosine 5'-[gamma-thio]triphosphate-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate in HL-60 granulocytes. Evidence that the guanine nucleotide acts by relieving phospholipase C from an inhibitory constraint. Camps M; Hou CF; Jakobs KH; Gierschik P Biochem J; 1990 Nov; 271(3):743-8. PubMed ID: 2173906 [TBL] [Abstract][Full Text] [Related]
62. [The effect of propionic and lipoic acids on flavinogenesis by Eremothecium ashbyii]. Tsibul'skaia MI; Mironov VA Prikl Biokhim Mikrobiol; 1973; 9(4):565-8. PubMed ID: 4596323 [No Abstract] [Full Text] [Related]
63. ANTAGONISM BETWEEN PURINES IN PURINE-REQUIRING BACILLUS SUBTILIS MUTANTS. GUTHRIE R; LU WC Arch Biochem Biophys; 1964 Dec; 108():398-402. PubMed ID: 14244678 [No Abstract] [Full Text] [Related]
64. Purine salvage in Entamoeba histolytica. Lo HS; Wang CC J Parasitol; 1985 Oct; 71(5):662-9. PubMed ID: 2865346 [TBL] [Abstract][Full Text] [Related]
65. Biosynthesis of riboflavin in vitro. Isotopic incorporation studies in Pichia guilliermondii extracts. Miersch J Biochim Biophys Acta; 1980 Mar; 628(2):145-51. PubMed ID: 7357033 [TBL] [Abstract][Full Text] [Related]
66. Oversynthesis of diacetyl and acetoin in a riboflavin deficient mutant of yeast. Nakajima K; Saito A Int J Vitam Nutr Res; 1987; 57(3):279-83. PubMed ID: 3316092 [TBL] [Abstract][Full Text] [Related]
67. The dynamics of cGMP metabolism in neuroblastoma N1E-115 cells determined by 18O labeling of guanine nucleotide alpha-phosphoryls. Graeff RM; Walseth TF; Goldberg ND Neurochem Res; 1987 Jun; 12(6):551-60. PubMed ID: 2439934 [TBL] [Abstract][Full Text] [Related]
68. Calcium-induced secretion from permeabilized rat mast cells: requirements for guanine nucleotides. Koffer A Biochim Biophys Acta; 1993 Apr; 1176(3):231-9. PubMed ID: 8471625 [TBL] [Abstract][Full Text] [Related]
69. Guanine-nucleotide- and adenine-nucleotide-dependent regulation of phospholipase D in electropermeabilized HL-60 granulocytes. Xie MS; Dubyak GR Biochem J; 1991 Aug; 278 ( Pt 1)(Pt 1):81-9. PubMed ID: 1883343 [TBL] [Abstract][Full Text] [Related]
70. Biosynthesis of deuterated riboflavin: structure determination by NMR and mass spectrometry. Pluta PL; Crespi HL; Klein M; Blake MI; Studier MH; Katz JJ J Pharm Sci; 1976 Mar; 65(3):362-6. PubMed ID: 944259 [TBL] [Abstract][Full Text] [Related]
71. Sports Participation Promotes Beneficial Adaptations in the Erythrocyte Guanylate Nucleotide Pool in Male Athletes Aged 20-90 Years. Pospieszna B; Kusy K; Slominska EM; Ciekot-Sołtysiak M; Zieliński J Clin Interv Aging; 2023; 18():987-997. PubMed ID: 37377627 [TBL] [Abstract][Full Text] [Related]
72. Defective guanine uptake in an 8-azaguanine-resistant mutant of Salmonella typhimurium. Thakar JH; Kalle GP J Bacteriol; 1968 Feb; 95(2):458-64. PubMed ID: 4867741 [TBL] [Abstract][Full Text] [Related]
73. Induction of erythroid differentiation of K562 cells by 4-carbamoylimidazolium 5-olate (SM-108). Hata Y; Yamaji Y; Shiotani T; Fujita J; Kamano H; Ikeda K; Takahara J; Irino S Biochem Pharmacol; 1991 Nov; 42(12):2307-12. PubMed ID: 1684898 [TBL] [Abstract][Full Text] [Related]
74. Receptor-stimulated guanine-nucleotide-triphosphate binding to guanine-nucleotide-binding regulatory proteins. Nucleotide exchange and beta-subunit-mediated phosphotransfer reactions. Kaldenberg-Stasch S; Baden M; Fesseler B; Jakobs KH; Wieland T Eur J Biochem; 1994 Apr; 221(1):25-33. PubMed ID: 8168513 [TBL] [Abstract][Full Text] [Related]
75. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Kwok-Keung Fung B; Stryer L Proc Natl Acad Sci U S A; 1980 May; 77(5):2500-4. PubMed ID: 6930647 [TBL] [Abstract][Full Text] [Related]
76. Biosynthesis of riboflavin by Eremothecium ashbyii. 8. The amino acid and keto acid pools of the mycelial cell-free extracts and their relation to transaminase activities at different stages of growth. Osman HG; Chenouda MS Can J Microbiol; 1965 Aug; 11(4):619-24. PubMed ID: 5861282 [No Abstract] [Full Text] [Related]
77. Characterization of [3H]guanine nucleotide binding sites in brain membranes. Childers SR; Snyder SH J Neurochem; 1980 Jul; 35(1):183-92. PubMed ID: 6256476 [TBL] [Abstract][Full Text] [Related]
78. Biosynthesis of riboflavin by Eremothecium ashbyii. IX. Growth and riboflavin formation and their relation to the utilization and assimilation of the constituents of the liquid culture media. Osman HG; Chenouda MS Can J Microbiol; 1965 Aug; 11(4):625-8. PubMed ID: 5861283 [No Abstract] [Full Text] [Related]
79. Guanine triphosphate-binding site regulation by follicle-stimulating hormone and guanine diphosphate in membranes from immature rat Sertoli cells. Fletcher PW; Reichert LE Endocrinology; 1986 Nov; 119(5):2221-6. PubMed ID: 3095103 [TBL] [Abstract][Full Text] [Related]
80. A comparison of purine metabolism and nucleotide pools in normal and hypoxanthine-guanine phosphoribosyltransferase-deficient neuroblastoma cells. Snyder FF; Cruikshank MK; Seegmiller JE Biochim Biophys Acta; 1978 Nov; 543(4):556-69. PubMed ID: 718989 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]