These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6639081)

  • 1. Light-dependent nitration of bacteriorhodopsin.
    Lam E; Seltzer S; Katsura T; Packer L
    Arch Biochem Biophys; 1983 Nov; 227(1):321-8. PubMed ID: 6639081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of tyrosine residues in the function of bacteriorhodopsin. Specific nitration of tyrosine 26.
    Lemke HD; Oesterhelt D
    Eur J Biochem; 1981 Apr; 115(3):595-604. PubMed ID: 7016540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective nitration of tyrosines-26 and -64 in bacteriorhodopsin with tetranitromethane.
    Scherrer P; Stoeckenius W
    Biochemistry; 1984 Dec; 23(25):6195-202. PubMed ID: 6549264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of tyrosine-26 and tyrosine-64 nitration on the photoreactions of bacteriorhodopsin.
    Scherrer P; Stoeckenius W
    Biochemistry; 1985 Dec; 24(26):7733-40. PubMed ID: 3004563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic characterization of nitrated purple membranes.
    Lam E; Pande A; Callender R; Hilinski EF; Rentzepis PM; Packer L
    Biochem Int; 1984 Feb; 8(2):217-24. PubMed ID: 6477601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible inhibition of the proton pump bacteriorhodopsin by modification of tyrosine 64.
    Lemke HD; Bergmeyer J; Straub J; Oesterhelt D
    J Biol Chem; 1982 Aug; 257(16):9384-8. PubMed ID: 6286619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 2. Tyrosines-26 and -64.
    Roepe P; Scherrer P; Ahl PL; Das Gupta SK; Bogomolni RA; Herzfeld J; Rothschild KJ
    Biochemistry; 1987 Oct; 26(21):6708-17. PubMed ID: 3427039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption spectral properties of acetylated bacteriorhodopsin in purple membrane depending on pH.
    Maeda A; Takeuchi Y; Yoshizawa T
    Biochemistry; 1982 Aug; 21(18):4479-83. PubMed ID: 7126552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of modification of the tyrosine residues of bacteriorhodopsin with tetranitromethane.
    Campos-Cavieres M; Moore TA; Perham RN
    Biochem J; 1979 Apr; 179(1):233-8. PubMed ID: 475758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet-visible transient spectroscopy of bacteriorhodopsin mutants. Evidence for two forms of tyrosine-185----phenylalanine.
    Duñach M; Berkowitz S; Marti T; He YW; Subramaniam S; Khorana HG; Rothschild KJ
    J Biol Chem; 1990 Oct; 265(28):16978-84. PubMed ID: 2211603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitration of the tyrosine residues of porcine pancreatic colipase with tetranitromethane, and properties of the nitrated derivatives.
    De Caro JD; Behnke WD; Bonicel JJ; Desnuelle PA; Rovery M
    Biochim Biophys Acta; 1983 Sep; 747(3):253-62. PubMed ID: 6615844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of genetic modification of tyrosine-185 on the proton pump and the blue-to-purple transition in bacteriorhodopsin.
    Jang DJ; el-Sayed MA; Stern LJ; Mogi T; Khorana HG
    Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4103-7. PubMed ID: 2349220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of 9-cis- and 11-cis-retinal pigments from bacteriorhodopsin by irradiating purple membrane in acid.
    Maeda A; Iwasa T; Yoshizawa T
    Biochemistry; 1980 Aug; 19(16):3825-31. PubMed ID: 7407071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light activates rotations of bacteriorhodopsin in the purple membrane.
    Ahl PL; Cone RA
    Biophys J; 1984 Jun; 45(6):1039-49. PubMed ID: 6743741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of bacteriorhodopsin color by chloride at low pH. Significance for the proton pump mechanism.
    Renthal R; Shuler K; Regalado R
    Biochim Biophys Acta; 1990 Apr; 1016(3):378-84. PubMed ID: 2158820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uv-visible spectroscopy of bacteriorhodopsin mutants: substitution of Arg-82, Asp-85, Tyr-185, and Asp-212 results in abnormal light-dark adaptation.
    Duñach M; Marti T; Khorana HG; Rothschild KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9873-7. PubMed ID: 2263638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Tyrosine residues in histones. Kinetics of histones F1 and F2A1 nitration by tetranitromethane].
    Shliapnikov SV; Margulis GU; Glotov BO; Severin ES
    Mol Biol (Mosk); 1976; 10(2):618-23. PubMed ID: 1053046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical and chemical studies on the chromophore of bacteriorhodopsin.
    Schreckenbach T; Oesterhelt D
    Fed Proc; 1977 May; 36(6):1810-4. PubMed ID: 15874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature of the principal photointermediate of halorhodopsin.
    Lanyi JK
    Biochem Biophys Res Commun; 1984 Jul; 122(1):91-6. PubMed ID: 6743349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemistry and fluorescence of bacteriorhodopsin excited in its 280-nm absorption band.
    Kalisky O; Feitelson J; Ottolenghi M
    Biochemistry; 1981 Jan; 20(1):205-9. PubMed ID: 7470473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.