These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 6639943)

  • 1. Low-potential cytochrome b as an essential electron-transport component of menaquinone reduction by formate in Vibrio succinogenes.
    Unden G; Kröger A
    Biochim Biophys Acta; 1983 Nov; 725(2):325-31. PubMed ID: 6639943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes.
    Kröger A; Winkler E; Innerhofer A; Hackenberg H; Schägger H
    Eur J Biochem; 1979 Mar; 94(2):465-75. PubMed ID: 428397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural properties of the proteoliposomes catalyzing electron transport from formate to fumarate.
    Unden G; Mörschel E; Bokranz M; Kröger A
    Biochim Biophys Acta; 1983 Oct; 725(1):41-8. PubMed ID: 6626539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The function of the subunits of the fumarate reductase complex of Vibrio succinogenes.
    Unden G; Kröger A
    Eur J Biochem; 1981 Dec; 120(3):577-84. PubMed ID: 7333282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes.
    Biel S; Simon J; Gross R; Ruiz T; Ruitenberg M; Kröger A
    Eur J Biochem; 2002 Apr; 269(7):1974-83. PubMed ID: 11952800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes.
    Unden G; Hackenberg H; Kröger A
    Biochim Biophys Acta; 1980 Jul; 591(2):275-88. PubMed ID: 7397125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phorphorylative electron transport chains lacking a cytochrome bc1 complex.
    Kröger A; Paulsen J; Schröder I
    J Bioenerg Biomembr; 1986 Jun; 18(3):225-34. PubMed ID: 3015897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes.
    Kröger A; Dorrer E; Winkler E
    Biochim Biophys Acta; 1980 Jan; 589(1):118-36. PubMed ID: 7356976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the fumarate metabolism of the syntrophic propionate-oxidizing bacterium strain MPOB.
    Van Kuijk BL; Schlösser E; Stams AJ
    Arch Microbiol; 1998 Apr; 169(4):346-52. PubMed ID: 9531636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-transfer complexes of Ascaris suum muscle mitochondria. II. Succinate-coenzyme Q reductase (complex II) associated with substrate-reducible cytochrome b-558.
    Takamiya S; Furushima R; Oya H
    Biochim Biophys Acta; 1986 Jan; 848(1):99-107. PubMed ID: 3753651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production driven by formate oxidation in Shewanella oneidensis MR-1.
    Xiong J; Chan D; Guo X; Chang F; Chen M; Wang Q; Song X; Wu C
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5579-5591. PubMed ID: 32303818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism.
    Kröger A; Biel S; Simon J; Gross R; Unden G; Lancaster CR
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):23-38. PubMed ID: 11803015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fumarate reduction in Proteus mirabilis.
    Van der Beek EG; Oltmann LF; Stouthamer AH
    Arch Microbiol; 1976 Nov; 110(23):195-206. PubMed ID: 189721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrate reductase complex of Escherichia coli K-12: participation of specific formate dehydrogenase and cytochrome b1 components in nitrate reduction.
    Ruiz-Herrera J; DeMoss JA
    J Bacteriol; 1969 Sep; 99(3):720-9. PubMed ID: 4905536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase.
    Costa KC; Wong PM; Wang T; Lie TJ; Dodsworth JA; Swanson I; Burn JA; Hackett M; Leigh JA
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11050-5. PubMed ID: 20534465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2.
    Gross R; Simon J; Lancaster CR; Kröger A
    Mol Microbiol; 1998 Nov; 30(3):639-46. PubMed ID: 9822828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of the formate-nitrate electron transport pathway from inactive components in Escherichia coli.
    Scott RH; DeMoss JA
    J Bacteriol; 1976 Apr; 126(1):478-86. PubMed ID: 770433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wolinella succinogenes quinol:fumarate reductase-2.2-A resolution crystal structure and the E-pathway hypothesis of coupled transmembrane proton and electron transfer.
    Lancaster CR
    Biochim Biophys Acta; 2002 Oct; 1565(2):215-31. PubMed ID: 12409197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-transfer complexes of Ascaris suum muscle mitochondria. III. Composition and fumarate reductase activity of complex II.
    Kita K; Takamiya S; Furushima R; Ma YC; Suzuki H; Ozawa T; Oya H
    Biochim Biophys Acta; 1988 Sep; 935(2):130-40. PubMed ID: 2843227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of a functional electron-transfer chain from purified formate dehydrogenase and fumarate reductase complexes.
    Unden G; Kröger A
    Methods Enzymol; 1986; 126():387-99. PubMed ID: 2856137
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.