These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6639944)

  • 1. Sodium-dependent transport of phosphate in LLC-PK1 cells.
    Biber J; Brown CD; Murer H
    Biochim Biophys Acta; 1983 Nov; 735(3):325-30. PubMed ID: 6639944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium-dependent phosphate transport by apical membrane vesicles from a cultured renal epithelial cell line (LLC-PK1).
    Brown CD; Bodmer M; Biber J; Murer H
    Biochim Biophys Acta; 1984 Jan; 769(2):471-8. PubMed ID: 6696895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ouabain and ortho vanadate on transport-related properties of the LLC-PK1 renal epithelial cell line.
    Mullin JM; Diamond L; Kleinzeller A
    J Cell Physiol; 1980 Oct; 105(1):1-6. PubMed ID: 7430261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na(+)- and energy-dependent transport of cadmium into LLC-PK1 cells.
    Endo T; Kimura O; Sasaya M; Takada M; Sakata M
    Biol Pharm Bull; 1995 Dec; 18(12):1689-93. PubMed ID: 8787789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate uptake by a kidney cell line (LLC-PK1).
    Rabito CA
    Am J Physiol; 1983 Jul; 245(1):F22-31. PubMed ID: 6869535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate uptake by kidney epithelial (LLC-PK1) cells.
    Noronha-Blob L; Filburn C; Sacktor B
    Arch Biochem Biophys; 1984 Oct; 234(1):265-74. PubMed ID: 6091566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Na+-dependent phosphate uptake in cultured kidney cells (JTC-12) from monkey.
    Takuwa Y; Ogata E
    Biochem J; 1985 Sep; 230(3):715-21. PubMed ID: 3933482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of Na+/phosphate cotransport in LLC-PK1 cells by 12-O-tetradecanoylphorbol 13-acetate (TPA).
    Mohrmann I; Mohrmann M; Biber J; Murer H
    Biochim Biophys Acta; 1986 Aug; 860(1):35-43. PubMed ID: 3730384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sodium-hydrogen exchange system in isolated apical membrane from LLC-PK1 epithelia.
    Moran A; Biber J; Murer H
    Am J Physiol; 1986 Dec; 251(6 Pt 2):F1003-8. PubMed ID: 3024503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of the Na+-sugar cotransport system in a kidney epithelial cell line (LLC PK1).
    Rabito CA
    Biochim Biophys Acta; 1981 Dec; 649(2):286-96. PubMed ID: 7198488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarized amino acid transport by an epithelial cell line of renal origin (LLC-PK1). The apical systems.
    Rabito CA; Karish MV
    J Biol Chem; 1983 Feb; 258(4):2543-7. PubMed ID: 6822573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive Na+ transport in an epithelial cell line (LLC-PK1) with characteristics of proximal tubular cells.
    Cantiello HF; Scott JA; Rabito CA
    Am J Physiol; 1987 Apr; 252(4 Pt 2):F590-7. PubMed ID: 3031998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate transport in intestinal brush-border membrane vesicles: effect of pH and dietary phosphate.
    Quamme GA
    Am J Physiol; 1985 Aug; 249(2 Pt 1):G168-76. PubMed ID: 4025545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate uptake by primary renal proximal tubule cell cultures grown in hormonally defined medium.
    Waqar MA; Seto J; Chung SD; Hiller-Grohol S; Taub M
    J Cell Physiol; 1985 Sep; 124(3):411-23. PubMed ID: 3850091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercury uptake by LLC-PK1 cells: dependence on temperature and membrane potential.
    Endo T; Kimura O; Sakata M; Shaikh ZA
    Toxicol Appl Pharmacol; 1997 Oct; 146(2):294-8. PubMed ID: 9344897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na-Pi cotransport in LLC-PK1 cells: fast adaptive response to Pi deprivation.
    Biber J; Murer H
    Am J Physiol; 1985 Nov; 249(5 Pt 1):C430-4. PubMed ID: 4061629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidant-induced alterations in glucose and phosphate transport in LLC-PK1 cells: mechanisms of injury.
    Andreoli SP; McAteer JA; Seifert SA; Kempson SA
    Am J Physiol; 1993 Sep; 265(3 Pt 2):F377-84. PubMed ID: 8214096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of phosphate transport in phosphate-deprived LLC-PK1 cells.
    Caverzasio J; Brown CD; Biber J; Bonjour JP; Murer H
    Am J Physiol; 1985 Jan; 248(1 Pt 2):F122-7. PubMed ID: 3970160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodium-dependent inorganic phosphate (Pi) transport and adaptation to low Pi concentration medium in LLC-PK1 cells.
    Caverzasio J; Bonjour JP; Biber J; Brown CD; Murer H
    Prog Clin Biol Res; 1984; 168():315-8. PubMed ID: 6514740
    [No Abstract]   [Full Text] [Related]  

  • 20. Adaptation to Pi deprivation of cell Na-dependent Pi uptake: a widespread process.
    Escoubet B; Djabali K; Amiel C
    Am J Physiol; 1989 Feb; 256(2 Pt 1):C322-8. PubMed ID: 2537572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.