BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6639946)

  • 1. Interaction of biologically active molecules with phospholipid membranes. I. Fluorescence depolarization studies on the effect of polymeric biocide bearing biguanide groups in the main chain.
    Ikeda T; Tazuke S; Watanabe M
    Biochim Biophys Acta; 1983 Nov; 735(3):380-6. PubMed ID: 6639946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of a polymeric biguanide biocide with phospholipid membranes.
    Ikeda T; Ledwith A; Bamford CH; Hann RA
    Biochim Biophys Acta; 1984 Jan; 769(1):57-66. PubMed ID: 6691980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the mode of action of polyhexamethylene biguanide against Listeria innocua by Fourier transformed infrared spectroscopy and fluorescence anisotropy analysis.
    Chadeau E; Dumas E; Adt I; Degraeve P; Noël C; Girodet C; Oulahal N
    Can J Microbiol; 2012 Dec; 58(12):1353-61. PubMed ID: 23210992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the biocide action of poly(hexamethylene biguanide) using Langmuir monolayers of dipalmitoyl phosphatidylglycerol.
    Souza AL; Ceridório LF; Paula GF; Mattoso LH; Oliveira ON
    Colloids Surf B Biointerfaces; 2015 Aug; 132():117-21. PubMed ID: 26037700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbation of phospholipid bilayers by DDT.
    Chefurka W; Chatelier RC; Sawyer WH
    Biochim Biophys Acta; 1987 Jan; 896(2):181-6. PubMed ID: 3801467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A preservative-and-fluorescein interaction model for benign multipurpose solution-associated transient corneal hyperfluorescence.
    Bright FV; Merchea MM; Kraut ND; Maziarz EP; Liu XM; Awasthi AK
    Cornea; 2012 Dec; 31(12):1480-8. PubMed ID: 22410645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Polyhexamethylene Biguanide and Polyquaternium-1 on Phospholipid Bilayer Structure and Dynamics.
    Horner IJ; Kraut ND; Hurst JJ; Rook AM; Collado CM; Atilla-Gokcumen GE; Maziarz EP; Liu XM; Merchea MM; Bright FV
    J Phys Chem B; 2015 Aug; 119(33):10531-42. PubMed ID: 26239890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of kanamycin A and kanamycin B with phospholipids.
    Yung MW; Green C
    J Antibiot (Tokyo); 1987 Jun; 40(6):862-7. PubMed ID: 3610836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus.
    Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G
    Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymyxin interaction with negatively charged lipid bilayer membranes and the competitive effect of Ca2+.
    Sixl F; Galla HJ
    Biochim Biophys Acta; 1981 May; 643(3):626-35. PubMed ID: 6264957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial degradation of the biocide polyhexamethylene biguanide: isolation and characterization of enrichment consortia and determination of degradation by measurement of stable isotope incorporation into DNA.
    O'Malley LP; Shaw CH; Collins AN
    J Appl Microbiol; 2007 Oct; 103(4):1158-69. PubMed ID: 17897221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids.
    Allen MJ; Morby AP; White GF
    Biochem Biophys Res Commun; 2004 May; 318(2):397-404. PubMed ID: 15120614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for two distinct acidic phospholipid-binding sites in cytochrome c.
    Rytömaa M; Kinnunen PK
    J Biol Chem; 1994 Jan; 269(3):1770-4. PubMed ID: 8294426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes.
    Wrobel D; Appelhans D; Signorelli M; Wiesner B; Fessas D; Scheler U; Voit B; Maly J
    Biochim Biophys Acta; 2015 Jul; 1848(7):1490-501. PubMed ID: 25843678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the role of anionic lipids in charged protein interactions with membranes.
    Vorobyov I; Allen TW
    Biochim Biophys Acta; 2011 Jun; 1808(6):1673-83. PubMed ID: 21073855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of chlorophyllase by negatively charged plant membrane lipids.
    Lambers JW; Terpstra W
    Biochim Biophys Acta; 1985 Oct; 831(2):225-35. PubMed ID: 4041468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces.
    Clayton JC; Hughes E; Middleton DA
    Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of the E. coli alkaline phosphatase precursor with model phospholipid membranes.
    Mikhaleva NI; Kalinin AE; Molotkovsky YuG ; Nesmeyanova MA
    Biochemistry (Mosc); 1997 Feb; 62(2):184-90. PubMed ID: 9159872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane effects of antiinflammatory agents. 2. Interaction of nonsteroidal antiinflammatory drugs with liposome and purple membranes.
    Hwang SB; Shen TY
    J Med Chem; 1981 Oct; 24(10):1202-11. PubMed ID: 7328581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.