These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 6639946)
1. Interaction of biologically active molecules with phospholipid membranes. I. Fluorescence depolarization studies on the effect of polymeric biocide bearing biguanide groups in the main chain. Ikeda T; Tazuke S; Watanabe M Biochim Biophys Acta; 1983 Nov; 735(3):380-6. PubMed ID: 6639946 [TBL] [Abstract][Full Text] [Related]
2. Interaction of a polymeric biguanide biocide with phospholipid membranes. Ikeda T; Ledwith A; Bamford CH; Hann RA Biochim Biophys Acta; 1984 Jan; 769(1):57-66. PubMed ID: 6691980 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the mode of action of polyhexamethylene biguanide against Listeria innocua by Fourier transformed infrared spectroscopy and fluorescence anisotropy analysis. Chadeau E; Dumas E; Adt I; Degraeve P; Noël C; Girodet C; Oulahal N Can J Microbiol; 2012 Dec; 58(12):1353-61. PubMed ID: 23210992 [TBL] [Abstract][Full Text] [Related]
4. Understanding the biocide action of poly(hexamethylene biguanide) using Langmuir monolayers of dipalmitoyl phosphatidylglycerol. Souza AL; Ceridório LF; Paula GF; Mattoso LH; Oliveira ON Colloids Surf B Biointerfaces; 2015 Aug; 132():117-21. PubMed ID: 26037700 [TBL] [Abstract][Full Text] [Related]
6. A preservative-and-fluorescein interaction model for benign multipurpose solution-associated transient corneal hyperfluorescence. Bright FV; Merchea MM; Kraut ND; Maziarz EP; Liu XM; Awasthi AK Cornea; 2012 Dec; 31(12):1480-8. PubMed ID: 22410645 [TBL] [Abstract][Full Text] [Related]
7. Effects of Polyhexamethylene Biguanide and Polyquaternium-1 on Phospholipid Bilayer Structure and Dynamics. Horner IJ; Kraut ND; Hurst JJ; Rook AM; Collado CM; Atilla-Gokcumen GE; Maziarz EP; Liu XM; Merchea MM; Bright FV J Phys Chem B; 2015 Aug; 119(33):10531-42. PubMed ID: 26239890 [TBL] [Abstract][Full Text] [Related]
8. Interaction of kanamycin A and kanamycin B with phospholipids. Yung MW; Green C J Antibiot (Tokyo); 1987 Jun; 40(6):862-7. PubMed ID: 3610836 [TBL] [Abstract][Full Text] [Related]
9. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451 [TBL] [Abstract][Full Text] [Related]
10. Polymyxin interaction with negatively charged lipid bilayer membranes and the competitive effect of Ca2+. Sixl F; Galla HJ Biochim Biophys Acta; 1981 May; 643(3):626-35. PubMed ID: 6264957 [TBL] [Abstract][Full Text] [Related]
11. Microbial degradation of the biocide polyhexamethylene biguanide: isolation and characterization of enrichment consortia and determination of degradation by measurement of stable isotope incorporation into DNA. O'Malley LP; Shaw CH; Collins AN J Appl Microbiol; 2007 Oct; 103(4):1158-69. PubMed ID: 17897221 [TBL] [Abstract][Full Text] [Related]
12. Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids. Allen MJ; Morby AP; White GF Biochem Biophys Res Commun; 2004 May; 318(2):397-404. PubMed ID: 15120614 [TBL] [Abstract][Full Text] [Related]
13. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study. Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202 [TBL] [Abstract][Full Text] [Related]
14. Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. Rytömaa M; Kinnunen PK J Biol Chem; 1994 Jan; 269(3):1770-4. PubMed ID: 8294426 [TBL] [Abstract][Full Text] [Related]
15. Interaction study between maltose-modified PPI dendrimers and lipidic model membranes. Wrobel D; Appelhans D; Signorelli M; Wiesner B; Fessas D; Scheler U; Voit B; Maly J Biochim Biophys Acta; 2015 Jul; 1848(7):1490-501. PubMed ID: 25843678 [TBL] [Abstract][Full Text] [Related]
16. On the role of anionic lipids in charged protein interactions with membranes. Vorobyov I; Allen TW Biochim Biophys Acta; 2011 Jun; 1808(6):1673-83. PubMed ID: 21073855 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of chlorophyllase by negatively charged plant membrane lipids. Lambers JW; Terpstra W Biochim Biophys Acta; 1985 Oct; 831(2):225-35. PubMed ID: 4041468 [TBL] [Abstract][Full Text] [Related]
18. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces. Clayton JC; Hughes E; Middleton DA Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815 [TBL] [Abstract][Full Text] [Related]
19. Interaction of the E. coli alkaline phosphatase precursor with model phospholipid membranes. Mikhaleva NI; Kalinin AE; Molotkovsky YuG ; Nesmeyanova MA Biochemistry (Mosc); 1997 Feb; 62(2):184-90. PubMed ID: 9159872 [TBL] [Abstract][Full Text] [Related]
20. Membrane effects of antiinflammatory agents. 2. Interaction of nonsteroidal antiinflammatory drugs with liposome and purple membranes. Hwang SB; Shen TY J Med Chem; 1981 Oct; 24(10):1202-11. PubMed ID: 7328581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]